
BASICS in AI = Metrics

BWS 2024 - IA Glotin - annex

Performance metrics are a part of every machine learning pipeline.

Every machine learning task can be broken down to either Regression or Classification, just
like the performance metrics.

Notations

We’ll always note

X : the observation

Y or *Y or Yj : the label of correction prediction of X

^Y or Y_hat : the predictions of the model F

We’ll train F using a loss function with the aim *Y = F(X)

1) LOSS Functions

Loss functions show a measure of model performance. They’re used to train a machine
learning model (using some kind of optimization like Gradient Descent), and they’re usually
differentiable in the model’s parameters. Metrics are used to monitor and measure the
performance of a model (during training and testing), and don’t need to be differentiable.

However, if, for some tasks, the performance metric is differentiable, it can also be used as a
loss function (perhaps with some regularizations added to it), such as MSE.

It could be MSE, dKL cross entropy…

2) Regression metrics
Regression models have continuous output. So, we need a metric based on calculating
some sort of distance between predicted and ground truth.

In order to evaluate Regression models, we’ll discuss these metrics in detail:

● Mean Absolute Error (MAE),
● Mean Squared Error (MSE),
● Root Mean Squared Error (RMSE),
● R² (R-Squared).

1

Mean Squared Error (MSE) = MSE = (SUM(Yj - ^Yj)**2) / N

● y_j: ground-truth value
● y_hat: predicted value from the regression model
● N: number of datums

It’s differentiable, so it can be optimized better. Mean squared error is perhaps the
most popular metric used for regression problems. It essentially finds the average of
the squared difference between the target value and the value predicted by the
regression model.

● It penalizes even small errors by squaring them, which essentially leads to an
overestimation of how bad the model is.This can be implemented simply using
NumPy arrays in Python.

mse = (y-y_hat)**2
print(f"MSE: {mse.mean():0.2f} (+/- {mse.std():0.2f})")

Mean Absolute Error (MAE) = MAE = (SUM(abs(Yj - ^Yj))) / N
● y_j: ground-truth value
● y_hat: predicted value from the regression model
● N: number of datums

Mean Absolute Error is the average of the difference between the ground truth and the
predicted values. Mathematically

● It’s more robust towards outliers than MAE, since it doesn’t exaggerate errors.
● It gives us a measure of how far the predictions were from the actual output.

However, since MAE uses absolute value of the residual, it doesn’t give us an idea of
the direction of the error, i.e. whether we’re under-predicting or over-predicting the
data.

● MAE is non-differentiable as opposed to MSE, which is differentiable.

Similar to MSE, this metric is also simple to implement.

mae = np.abs(y-y_hat)
print(f"MAE: {mae.mean():0.2f} (+/- {mae.std():0.2f})")

2

3) Classification metrics
Classification problems are one of the world’s most widely researched areas. Use cases are
present in almost all production and industrial environments. Speech recognition, face
recognition, text classification – the list is endless. Classification models have discrete
output, so we need a metric that compares discrete classes in some form. Classification
Metrics evaluate a model’s performance and tell you how good or bad the classification is,
but each of them evaluates it in a different way.

So in order to evaluate Classification models, we’ll discuss these metrics in detail:

● Accuracy, Confusion Matrix (not a metric but fundamental to others), Precision and
Recall, AP and MAP, F1-score, AU or ROC

Confusion Matrix
Confusion Matrix is a tabular visualization of the ground-truth labels versus model
predictions. Each row of the confusion matrix represents the instances in a predicted class
and each column represents the instances in an actual class. Confusion Matrix is not exactly
a performance metric but sort of a basis on which other metrics evaluate the results.

In order to understand the confusion matrix, we need to set some value for the null
hypothesis as an assumption. For example, from our Breast Cancer data, let’s assume our
Null Hypothesis H⁰ be “The individual has cancer”.

Each cell in the confusion matrix represents an evaluation factor:

● True Positive(TP) signifies how many positive class samples your model predicted
correctly.

● True Negative(TN) signifies how many negative class samples your model predicted
correctly.

● False Positive(FP) signifies how many negative class samples your model predicted
incorrectly. This factor represents Type-I error in statistical nomenclature. This error
positioning in the confusion matrix depends on the choice of the null hypothesis.

● False Negative(FN) signifies how many positive class samples your model predicted
incorrectly. This factor represents Type-II error in statistical nomenclature. This error
positioning in the confusion matrix also depends on the choice of the null hypothesis.

3

We can calculate the cell values using the code below:

def find_TP(y, y_hat):
counts the number of true positives (y = 1, y_hat = 1)
return sum((y == 1) & (y_hat == 1))

def find_FN(y, y_hat):
counts the number of false negatives (y = 1, y_hat = 0) Type-II

error
return sum((y == 1) & (y_hat == 0))

def find_FP(y, y_hat):
counts the number of false positives (y = 0, y_hat = 1) Type-I

error
return sum((y == 0) & (y_hat == 1))

def find_TN(y, y_hat):
counts the number of true negatives (y = 0, y_hat = 0)
return sum((y == 0) & (y_hat == 0))

Accuracy = (TP + TN) / (TP + TN + FN + FP)

Classification accuracy is perhaps the simplest metric to use and implement and is defined
as the number of correct predictions divided by the total number of predictions,
multiplied by 100.

We can implement this by comparing ground truth and predicted values in a loop or simply
utilizing the scikit-learn module to do the heavy lifting for us (not so heavy in this case).

Precision = TP / (TP + FP)
Precision is the ratio of true positives and total positives predicted

0<P<1

The precision metric focuses on Type-I errors(FP). A Type-I error occurs when we reject
a true null Hypothesis(H⁰). So, in this case, Type-I error is incorrectly labeling cancer
patients as non-cancerous.

A precision score towards 1 will signify that your model didn’t miss any true positives, and is
able to classify well between correct and incorrect labeling of cancer patients. What it cannot
measure is the existence of Type-II error, which is false negatives – cases when a
non-cancerous patient is identified as cancerous.

A low precision score (<0.5) means your classifier has a high number of false positives
which can be an outcome of imbalanced class or untuned model hyperparameters. In an

4

imbalanced class problem, you have to prepare your data beforehand with
over/under-sampling or focal loss in order to curb FP/FN.

As you would have guessed by looking at the confusion matrix values, that FP’s are 0, so
the condition is perfect for a 100% precise model on a given hyperparameter setting. In this
setting, no type-I error is reported, so the model has done a great job to curb incorrectly
labeling cancer patients as non-cancerous.

Since only type-I error remains in this setting, the precision rate goes down despite the fact
that type-II error is 0.

We can deduce from our example that only precision cannot tell you about your model
performance on various grounds.

Recall = Sensitivity = Hit Rate = R = TP / (TP + FN)
A Recall is essentially the ratio of true positives to all the positives in ground truth.

0<R<1

The recall metric focuses on type-II errors(FN). A type-II error occurs when we accept a
false null hypothesis(H⁰). So, in this case, type-II error is incorrectly labeling
non-cancerous patients as cancerous.

Recall towards 1 will signify that your model didn’t miss any true positives, and is able to
classify well between correctly and incorrectly labeling of cancer patients.

What it cannot measure is the existence of type-I error which is false positives i.e the cases
when a cancerous patient is identified as non-cancerous.

A low recall score (<0.5) means your classifier has a high number of false negatives which
can be an outcome of imbalanced class or untuned model hyperparameters. In an
imbalanced class problem, you have to prepare your data beforehand with
over/under-sampling or focal loss in order to curb FP/FN.

For set-I hyperparameters:
5

From the above confusion matrix values, there is 0 possibility of type-I errors and an
abundance of type-II errors. That’s the reason behind the low recall score. It only focuses on
type-II errors.

Ex. for set II :

The only error that’s persistent in this set is type-I errors and no type-II errors are reported.
This means that this model has done a great job to curb incorrectly labeling non-cancerous
patients as cancerous.

The major highlight of the above two metrics is that both can only be used in specific
scenarios since both of them identify only one set of errors.

Precision Recall tradeoff
To improve your model, you can either improve precision or recall – but not both! If you try to
reduce cases of non-cancerous patients being labeled as cancerous (FN/type-II), no direct
effect will take place on cancerous patients being labeled as non-cancerous.

Here’s a plot depicting the same tradeoff:

from sklearn.metrics import plot_precision_recall_curve
disp = plot_precision_recall_curve(clf, X, y)
disp.ax_.set_title('2-class Precision-Recall curve: '

'AP={0:0.2f}'.format(precision))

6

https://neptune.ai/blog/improving-ml-model-performance

This tradeoff highly impacts real-world scenarios, so we can deduce that precision and recall
alone aren’t very good metrics to rely on and work with. That’s the reason you see many
corporate reports and online competitions urge the submission metric to be a combination of
precision and recall.

F1-score = 2 / (1/p + 1/r)
The F1-score metric uses a combination of precision and recall. In fact, the F1 score is the
harmonic mean of the two. The formula of the two essentially is:

Now, a high F1 score symbolizes a high precision as well as high recall. It presents a good
balance between precision and recall and gives good results on imbalanced classification
problems.

A low F1 score tells you (almost) nothing — it only tells you about performance at a threshold.
Low recall means we didn’t try to do well on very much of the entire test set. Low precision
means that, among the cases we identified as positive cases, we didn’t get many of them
right.

But low F1 doesn’t say which cases. High F1 means we likely have high precision and recall
on a large portion of the decision (which is informative). With low F1, it’s unclear what the
problem is (low precision or low recall?), and whether the model suffers from type-I or type-II
error.

So, is F1 just a gimmick? Not really, it’s widely used, and considered a fine metric to
converge onto a decision, but not without some tweaks. Using FPR (false positive rates)
along with F1 will help curb type-I errors, and you’ll get an idea about the villain behind your
low F1 score.

For set-I hyperparameters:

If you recall our scores in set-I parameters were, P=1 and R=0.49. Thus, by employing both
of the metrics we get a score of 0.66 which doesn’t give you information about what type of
error is significant, but is still useful in deducing the performance of the model.

7

https://neptune.ai/blog/how-to-deal-with-imbalanced-classification-and-regression-data
https://neptune.ai/blog/how-to-deal-with-imbalanced-classification-and-regression-data

For set-II hyperparameters:

For set-II, parameters were, P=0.35 and R=1. So again, the F1 score sort of sums up the
break between P and R. Still, low F1 doesn’t tell you which error is happening.

F1 is no doubt one of the most popular metrics to judge model performance. It’s actually a
subset of wider metrics known as the F-scores.

AP = Average Precision for a class = integral of p(r) dr

MAP = average precision = SUM(AP(class) / number of classes

AUROC (Area under Receiver operating characteristics curve)
Better known as AUC-ROC score/curves. It makes use of true positive rates(TPR) and false
positive rates(FPR).

● Intuitively TPR/recall corresponds to the proportion of positive data points that are
correctly considered as positive, with respect to all positive data points. In other
words, the higher the TPR, the fewer positive data points we will miss.

● Intuitively FPR/fallout corresponds to the proportion of negative data points that are
mistakenly considered as positive, with respect to all negative data points. In other
words, the higher the FPR, the more negative data points we will misclassify.

To combine the FPR and the TPR into a single metric, we first compute the two former
metrics with many different thresholds for the logistic regression, then plot them on a single
graph. The resulting curve is called the ROC curve, and the metric we consider is the area
under this curve, which we call AUROC.

from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
ns_probs = [0 for _ in range(len(y))]
predict probabilities
lr_probs = clf_1.predict_proba(X)
keep probabilities for the positive outcome only
lr_probs = lr_probs[:, 1]
calculate scores
ns_auc = roc_auc_score(y, ns_probs)
lr_auc = roc_auc_score(y, lr_probs)
summarize scores

8

print('No Skill: ROC AUC=%.3f' % (ns_auc))
print('Logistic: ROC AUC=%.3f' % (lr_auc))
calculate roc curves
ns_fpr, ns_tpr, _ = roc_curve(y, ns_probs)
lr_fpr, lr_tpr, _ = roc_curve(y, lr_probs)
plot the roc curve for the model
pyplot.plot(ns_fpr, ns_tpr, linestyle='--', label='No Skill')
pyplot.plot(lr_fpr, lr_tpr, marker='.', label='Logistic')
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
pyplot.legend()
pyplot.show()

No Skill: ROC AUC=0.50

Logistic: ROC AUC=0.996
A no-skill classifier is one that can’t discriminate between the classes, and would predict a
random class or a constant class in all cases. The no-skill line changes based on the
distribution of the positive to negative classes. It’s a horizontal line with the value of the ratio
of positive cases in the dataset. For a balanced dataset, it’s 0.5.

The area equals the probability that a randomly chosen positive example ranks above (is
deemed to have a higher probability of being positive than negative) a randomly chosen
negative example.So, high ROC simply means that the probability of a randomly chosen
positive example is indeed positive. High ROC also means your algorithm does a good job at
ranking test data, with most negative cases at one end of a scale and positive cases at the
other.ROC curves aren’t a good choice when your problem has a huge class imbalance. The
reason for this is not straightforward but can be intuitively seen using the formulas, you can
read more about it here. You can still use them in that scenario after processing an
imbalance set, or using focal loss techniques. The AUROC metric has no use other than
academic research, and comparing different classifiers.

Bibliography : You find many more details on wikipedia

9

http://ftp.cs.wisc.edu/machine-learning/shavlik-group/davis.icml06.pdf

