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Abstract

Type II solar radio bursts have proven to be a useful tool for gaining insights into the behaviour of
complex solar events. Some of these events currently pose a large threat to society — but if we were
to gain insights into them in real-time, then their arrival times could be forecast and their damages
mitigated. In this work, we processes radio sensor data pointed at the Sun to automatically detect
the occurrence of type II radio bursts. We expand the scope of existing work by segmenting the
signal of detected bursts, and thereby facilitating the extraction of parameters needed to gain
insight into solar events. Furthermore, we detect bursts in a wavelength where no other detection
algorithm currently operates.

We utilise prior knowledge of how type II bursts drift through frequencies over time to assist with
the tasks of detection and segmentation. Detections are constrained to the possible physics of type
II bursts by searching for regions that follow their curvature at a given frequency. The resulting
high concentration of burst signal allows the use of a simple segmentation procedure based on
thresholding the density of detected regions. Prior to feature extraction, we straighten out the
curved regions into rectangular grids so that the resulting representations become normalised
across all frequencies. The consequential reduction in variance helps to overcome the limitations of
training a model when positive examples are scarce and costly to annotate. To assist with detection
further, we remove low intensity background noise using a mixture of intensity and spatial analysis,
and we normalise the intensity values of the sensor data using a combination of sigmoid remapping
and histogram equalisation. We demonstrate the effectiveness of our methodology using the time-
tested algorithms HOG and logistic regression. We evaluate our method on a custom dataset and
achieve 72.5% recall, a false positive every 28 hours (69.4% precision), and 28.2% segmentation
IOU. We assess the potential benefit of using specialised classifiers for different periods of solar
activity but found no improvements to performance.
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1 Introduction

1.1 Context and motivation

Solar radio bursts are a release of electromagnetic radiation from the Sun within the radio spectrum.
Since their discovery over 70 years ago [30], they have become an increasingly important topic of
study due to their relation with space weather. The effects of space weather have been relatively
inconsequential for most of human history, but the reliance of technological systems in modern
society introduces significant risks towards the occurrence of a major event. In 1859, an infamous
solar storm known as the Carrington Event resulted in a powerful Coronal Mass Ejection (CME) to
strike Earth — resulting in severe disruptions to telegraph systems around the world [3]. Today, the
cost of such an event in US dollars is estimated to be in the range of trillions, with the probability
of another event of similar magnitude being placed at 12% per decade [32].

The three major components of solar storms are solar flares, Solar Energetic Particle (SEP)
events, and CMEs — all of which are potential threats to society. The relation between these
events and solar radio bursts is strong because they originate within the same layers of the solar
atmosphere [41]. Not only does this allow radio bursts to give important insights into the behaviour
of space weather, but these insights can be gained ahead of time in order to forecast the arrival
times of events [25]. This is because radio bursts travel at light speed (∼8 minutes to reach Earth),
whereas SEP events take a few times longer, and CMEs can arrive from 15 hours to a few days
after.

Radio bursts can be classified into several different types, with types II, III, & IV being the
most pertinent to the application of space weather forecasting [41]. However, the only feasible way
to use these bursts as a forecasting tool is to automate the process of extracting their relevant
information. Several works [22, 27, 28, 29, 35] have attempted to detect the occurrence of radio
bursts — however, almost all have focused on type III bursts in particular. As far as we are aware,
Lobzin et al. [28] are the only ones to publish a methodology to detect type II bursts, and no
current works exist for type IV bursts. Salmane et al. [35] describes a method for detecting various
types of bursts although only presents results for type III bursts.

Type III bursts are characterised as having a very quick drift rate — a property that makes their
spatial structure in time-frequency plots to be linear, and therefore simple to detect heuristically.
Type IV bursts are also reasonably simple in structure due to their characteristic long duration
broadband emissions. They may occasionally be seen drifting down frequencies, although their
very slow drift means their observed frequencies remain to be relatively continuous. Type II bursts
are arguably the most complex in structure. Unlike the previous types, their spatial representation
in time-frequency plots becomes significantly altered in response to variances in drift rate and
frequency range. Furthermore, harmonic emissions are also common which result in two (and
sometimes three) distinct bands of emissions to be present at once. In addition, each band of
emissions can undergo splitting which further adds to their structural complexities. Bursts of
types II, III, & IV in time-frequency space can be seen in Figure 1.1.

Despite the relatively simple structure of type IV bursts, an attempt at their detection has
still not been made. This is likely because they haven’t been studied as much as the other two
types, which may be a result of them being the rarest type. Type IV bursts are said to be a good
indicator of SEP events, however, that is also true for type II bursts [17]. Moreover, a study has
shown that 88% of type IV bursts are preceded by type II bursts [7], so the necessary information
can likely be extracted from type II bursts instead and also at an earlier time. Because type II
bursts are a strong area of research in the literature of solar physics and space weather, as well as
their structure being too complex for heuristic-based detection approaches, we choose to focus our
study on type II bursts.

The work of Lobzin et al. [28] used a set of 46 type II burst events and detected them with
78% recall and 88% precision (one false positive every 100 hours). This performance is considered
unacceptable because around one in five events are missed, and a false positive is produced approx-
imately once every four days. Furthermore, their detections are one-dimensional which means the
amount of information that can be extracted from the events is limited. The aim of this work is
to detect type II bursts with greater accuracy, as well as providing segmentations so that a wider
range of burst parameters can be extracted. In addition, whereas the previous method focused
on coronal type II bursts, we instead focus our approach on interplanetary type II bursts within
the decameter-hectometric (DH) wavelength (1 MHz – 14 MHz). The lower frequencies of the
DH wavelength represent disturbances leaving the Sun permanently, and are thus highly relevant

1



(a) (b)

Figure 1.1: Solar radio bursts of types II, III, & IV [41]. In both examples, a second harmonic
band of emissions can be seen in the type II bursts, with all bands clearly exhibiting band-splitting.
Note that the temporal scaling is different in both examples. Nevertheless, we can see that the
burst in 1.1a drops down to 20 MHz in approximately half the time as the burst in 1.1b, and
therefore has a quicker drift rate. In 1.1a, we see a group of type III bursts appearing as straight
lines in the plot. In 1.1b, we see a type IV burst occupying a wide frequency range, and in this
particular instance can be seen showcasing a slow drift.

for space weather [17]. DH type II bursts are caused by shock-accelerated electrons driven by
CMEs, and hence provide useful information regarding the corresponding shocks and CMEs [18].
Nevertheless, type II bursts at all wavelengths are useful to study, and combining both detections
could be used to facilitate multi-wavelength studies.

1.2 Contributions

• Automated detection and segmentation of type II solar radio bursts — As far
as we are aware, we are the first to supplement radio burst detections with segmentations
for greater characterisation ability. We also believe we are the first to detect type II bursts
within the DH wavelength.

• Integration of prior physics knowledge — Expanding on earlier work, we utilise the
known drift model of type II bursts to simplify the task of detection and segmentation. The
model is used to describe the expected trajectory of type II bursts within time-frequency
space.

– Normalisation of signal orientation across all frequencies — By integrating
the knowledge of how frequency relates to the orientation of signal, we reduce the
variance associated with this effect from our resulting features. This greatly simplifies
the task of learning a predictive model, and also makes the model more adaptable to
new instruments with different frequency ranges.

– Preservation of information and spatial context through the application of a
two-dimensional coordinate transform — We improve on the previous approach by
utilising both the frequency and time dimensions during transformation. The previous
approach considered the frequency dimension only, resulting in information to be lost
from only partially describing the structure of bursts. Our approach resolves the issue
of information loss by ensuring that the entire structure of bursts within time-frequency
space is accounted for. In addition, our approach ensures spatial context is preserved
through the use of a one-to-one sampling rate between the pixels within the original
and transformed coordinate spaces.

– Constrained search — Our detector operates within our transformed coordinate
space, and as a result its search path becomes tied to the drift trajectory of type II
bursts. Within image space, this corresponds to a curved ROI whose curvature is a
function of frequency. This ensures that any detections are constrained to the possible
physics of type II bursts, since the detector looks for specific shapes depending on the
frequency. Furthermore, traditional approaches to combat variances in scale are inher-
ently designed for natural images, and hence do not translate well to time-frequency
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space; the drift trajectory of type II bursts would be in violation of the drift model,
resulting in shapes that are impossible within the context of the real-world. Our trans-
formed coordinate space means that any transformations directly correspond to the
curvature of the drift trajectory, and therefore any scaling becomes locked within the
possible physics of the drift model.

• Preparation of dynamic spectra for feature extraction — We facilitate the task of
pattern recognition by remapping the unbounded intensity range of the raw sensor data to a
fixed range. We believe our approach to be transferable to different instruments, since little
to no assumptions of the intensity distribution are needed.

• Pixel-wise annotated dataset — We hand-annotate a varied selection of 283 type II burst
events for segmentation training and evaluation.

1.3 Thesis overview

• Chapter 2: Background — We begin by investigating works that have integrated domain
knowledge to assist with the task of radio burst detection, and then we look more closely at
the existing methodology used to detect type II bursts. We then review techniques that are
relevant for developing a computer vision pipeline: histogram equalisation for contrast en-
hancement, Histogram of Oriented Gradients for feature extraction, and supervised machine
learning for classification.

• Chapter 3: Data — We present our dataset, including the process of collection and an-
notation. We also identify some challenges of the data, including issues that relate to the
instrument, radio bursts, and the Sun.

• Chapter 4: Methodology — This section is split into two main subsections: data pre-
processing and burst localisation. The preprocessing section mainly focuses on removing
the radio background noise as well as normalising the intensity values of the raw sensor
data. The localisation section presents the methodology for detecting and segmenting type
II bursts. We begin this section by presenting the design of an ROI modelled after the
curvature of type II bursts. A methodology is then devised for generating training samples
from our annotations, where optimisation techniques are used to select a finite number of
ROI parameters that best describe our annotations. We then describe our detection pipeline
for detecting burst segments, followed by our approach to post-processing detection ROIs to
produce segmentations.

• Chapter 5: Experiments — We begin by outlining the dataset used for training, and then
present results for experiments based on the stages of our methodology: preprocessing, feature
extraction, detection, and segmentation. The preceding hierarchy is used for evaluating
optimal parameter configurations. Failure-case analyses are carried out to identify areas for
improvement. We also test the effectiveness of utilising distinct classifiers for different periods
of solar activity.

• Chapter 6: Conclusion — This section summarises our methodology and outlines its
suitability for application to other instruments. We identify areas of future work such as
using the drift model to group burst segments and improve detection performance through
context-based reinforcement.
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2 Background

2.1 Solar radio bursts

2.1.1 Drift rate of type II bursts

Solar radio bursts are typically analysed as two-dimensional plots of frequency over time, or ‘dy-
namic spectra’ as known within the solar physics community. Within this data representation,
the ‘structure’ of radio bursts are a consequence of how they drift through frequencies over time.
The nature of how type II bursts drift through time — and hence its resulting structure — can
be modelled by a power law which describes the relationship between frequency and drift rate in
MHz/s [2]

−df/dt = αfψ, (2.1)

where α and ψ are a scaling factor and power index on the frequency f , respectively.
Given the model, we know that a burst will always decrease in frequency over time, and that

the rate at which it does so also decreases with frequency. The effect of this can be clearly seen
in Figure 1.1a, where the characteristic curvature of type II bursts is a result of the continuously
decreasing drift rate. Assuming that α and ψ are known and remain static over a burst’s lifetime,
then the curvature of the burst also becomes known ahead of time. In practice, the exact values of
α and ψ cannot be known as a prior, but an expected range of values would sufficiently describe
a range of possible drift trajectories. Using a collection of type II burst events across various
wavelengths, Aguilar-Rodriguez et al. [2] plotted frequency against drift rate to obtain the best
fitting power index for each wavelength. Presumably, the plot could also be used to determine an
upper and lower boundary of scaling factors and power indices.

Lobzin et al. [26] found that ψ ∈ [0.6, 1.3] for eight coronal type II bursts within 25 – 180 MHz.
As ψ ≈ 1, they state that re-mapping the frequency (f) coordinates as 1/f results in the curvature
of type II bursts to be reduced, as can be seen in Figure 2.1. Lobzin et al. [28] later used this
technique to reduce the difficult problem of burst detection down to the simple task of recognising
straight lines (see Section 2.1.3 for details).

Figure 2.1: Re-mapping f to 1/f to straighten the curvature of type II bursts [26]. a) Before (f),
and b) after (1/f).

While this technique does help to reduce the curvature of bursts, a major issue is the fact that
it only considers the frequency dimension for re-mapping. The procedure arranges the frequencies
in such a way that the curvature of bursts are forced into a linearised representation. Frequencies
that do not correspond to an increase in time are consequently discarded, and frequencies that
persist over several temporal samples correspond to the sampling of singular data points many
times. The transformation being unable to capture the full structure of bursts in time-frequency
space ultimately results in a loss of information.

The increased drift rate at higher frequencies means that several frequencies are likely to occupy
the same temporal sample, and will therefore be the predominant source of information loss. The
instrumentation design of Learmonth, the data used in [28], is arguably well suited to counteract
this effect; frequencies are split into two bands each with 401 channels: 180 – 75 MHz and 75 – 25
MHz, corresponding to a resolution ratio of 1:2.1 for the two bands. The decreased resolution at
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the higher frequencies helps to prevent too many frequencies occupying the same temporal sample,
and therefore helps to reduce the amount of information loss. Nevertheless, the 1/f re-mapping
still results in 33.5% of information to be lost. For Wind/WAVES, the instrument used in this
study, information loss is substantially greater at 56.3%. Type II bursts within Wind/WAVES also
occur mostly at the higher frequencies, resulting in the effective information loss to be even more
significant. Figure 2.2 shows the effect of the re-mapping for both Learmonth and Wind/WAVES.
It is clear that while the procedure may be somewhat acceptable for Learmonth data, the degree
of information loss within Wind/WAVES is far too great to be practical.
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Figure 2.2: Effect of 1/f re-mapping on frequency indices for a) Learmonth, and b) Wind/WAVES.
In both cases, we can see that the higher frequencies are compressed to a smaller range, and the
lower frequencies are up-scaled to a larger range. The effect of compression and up-scaling is much
more significant for Wind/WAVES; about half of the upper frequencies are compressed down to
a very small range, and conversely a very small range of low frequencies are up-scaled to occupy
about half of the data.

2.1.2 Galactic background noise

In the early 1930s, Karl Jansky established the field of radio astronomy when an astronomical radio
source had been observed for the first time [20]. The observed signal peaked every ∼24 hours, which
led to the discovery that it was coming from a fixed source: the constellation of Sagittarius. This
mysterious radio source was later designated Sagittarius A in the 1950s, and then in 1974 a bright
and compact component of the source was identified and named Sagittarius A*. Sagittarius A* is
now well known to be a supermassive black hole in the centre of the Milky Way galaxy [1].

It is no coincidence that the signal from Sagittarius A became the first observation of an
astronomical radio source; its abundance within radio observations certainly made it a prime
candidate. The property of being abundant does, however, interfere with the objective of observing
other astronomical radio sources. Figure 2.3 shows an example of how this noise is present within
observations of Jupiter, and how the signature of the noise varies with frequency and time. The two
peaks in 1972 and 1984 correspond to the orbital period of Jupiter intersecting with the line of sight
between Earth and the centre of the galaxy. The presence of this noise does have an advantage,
however: a reliably occurring source that’s well understood serves as an excellent reference for
calibration of radio telescopes [12]. Still, though, the presence of background noise can make it
difficult to identify weak signals comparable to the strength of the background, and can also hinder
the application of data processing techniques for feature enhancement and pattern recognition.

To ease the process of detecting solar radio bursts, Salmane et al. [35] removed the background
noise by making use of the fact that the distribution of its intensities is Gaussian. For each temporal
step, they used 7 hours of previous data to compute the mean and standard deviation for each
frequency channel. They argue that over a long enough period, the computed parameters will be
representative of the background, and hence can be used to subtract away the noisy signal. They
also argue that this approach can also be used to remove RFI (Radio Frequency Interference),
which is another type of noise where intense signal spans a frequency channel to create horizontal
structures within the data. Figure 2.4 shows their example of subtracting the background using the
mean intensity as the threshold, corresponding to a theoretical reduction of 50% of the background.
Their example does not clearly show the effectiveness of removing the background, but we do see
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Figure 2.3: Temperature of galactic background over 30 years of Jupiter observa-
tions [14]. X=Year{1965,1970,1975,1980,1985,1990,1995}, Y=Average antenna temperature
(x1000) K{0,100,200,300}; Series={18,20,22} MHz.

Figure 2.4: Before and after background subtraction (Salmane et al. [35]).

a clear reduction of RFI at the top of the image.
An issue with the approach used by Salmane et al. [35], at least for the data used in our own

study, is that the intensity levels of the background are many orders of magnitude smaller than
the possible range of the sensor. As a consequence, the mean as a metric has the tendency to
significantly overestimate the true intensity of the background due to the inclusion of outliers. For
example, the average intensity of background signal within our data is ∼1.05, and a strong type
III burst may have an intensity of 50+. Even just a single occurrence of a 3 minute type III burst
over the course of 7 hours would skew the mean from ∼1.05 to ∼1.4, which would be enough
to completely remove many instances of type II bursts. Furthermore, the temporary presence of
RFI means that its intensity will often be underestimated, resulting in a reduction of intensity as
opposed to a complete removal of the noise. Some cases of this happening can be seen in Figure 2.4.
When designing a detector, these inconsistencies could potentially be more of a detriment rather
than an advantage.

2.1.3 Detection of type II bursts

As far as we are aware, Lobzin et al. [28] is currently the only existing method for detecting type
II bursts. The fundamental aspect of their methodology is based around reducing the curvature
of type II bursts using the 1/f remapping described in Section 2.1.1, and then using a Hough
transform to detect straight lines. Using a selection of 46 events over 510 hours worth of data,
their method detected 36 events and 5 false positives. They evaluated their method using data from
the Learmonth solar radio spectrograph which covers the frequency range 25 – 180 MHz. The data
has been conveniently quantised into unsigned bytes but details on this process are inaccessible.

Prior to detection, they preprocess the data with the aim of producing a binary image that

6



separates burst signal from non-burst signal. They begin by discarding the 25 – 44 MHz frequency
range, stating that the prevalence of interference at this range is very high and will lead to an
increase in false positives. For the remaining interference, they report that their signal corresponds
to higher intensity values relative to other signal such as type II bursts. Therefore, they use
histogram equalisation to increase the dynamic range of burst signals. They then process the
data using a median filter, followed by a binarisation of the image. The criteria they use for
binarisation is to only preserve signal when it is the maximum intensity within a 3 pixel temporal
window. Morphological thinning is then applied to reduce the thickness of morphological structures
down to a one-dimensional line. To reduce the amount of non–type II signal, they remove any
isolated pixels as well as remove any morphological structures that are seen to increase with time.
Figure 2.5b shows an example of a complete preprocessed image, where Figure 2.5a shows the
resulting detection.

(a) (b)

Figure 2.5: Detection of type II bursts (Lobzin et al. [28]). The black lines in 2.5a show the
detections of type II bursts after using a Hough transform on the processed image 2.5b.

After applying the Hough transform, they group together segments separated by a short gap as
being part of the same event. Segments that overlap in time are also grouped, since it is assumed
that they correspond to harmonic emissions. To maximise the trade-off between true and false
positives, they use their selection of events to optimise the parameters of the Hough transform.
They state that a weakness of their approach is that short segments are difficult to recognise, since
the ability to detect them would correspond to a substantial increase in the false positive rate. We
can clearly see from Figure 2.5a how this fact, combined with the aggressive preprocessing, results
in a large portion of burst signal to remain undetected. Visual inspection of type II bursts within
Wind/WAVES, the instrument used in our own study, has shown that the signal of type II bursts
often represents short-lengthed structures. Preliminary experiments for Wind/WAVES resulted in
10% recall and a 10% false positive rate [4].

2.2 Histogram equalisation

Histogram equalisation is a technique used to spread out the distribution of intensity values that
are otherwise concentrated within a small range. The aim of this procedure is to maximise the
potential contrast available within a discrete number of grey levels L. To achieve this, we can
consider a transformation function T which maps the intensity values r of an image to its new
values s. Assuming r and s are normalised to [0, 1], then we can consider their histograms to
represent probability density functions in which the intensities act as continuous random variables.
The definition of T thus becomes a problem of satisfying

T (pr(r)) = ps(s), (2.2)

where pr and ps are probability density functions and ps is uniformly distributed. A transformation
that satisfies this condition is derived in [15], which is given as

sk = T (rk) = (L− 1)

k∑
j=0

nj
n
, 0 ≤ k ≤ L− 1, (2.3)
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where k is a grey level, n is the total number of pixels in an image, and nj is the total number of
pixels that have a grey level rj . The output of T (rk) is thus the cumulative probability of a given
grey level, which is then used as the intensity value for the new image.

2.3 Histogram of Oriented Gradients

In [10], Dalal & Triggs proposed a method for detecting humans within images. They note that
human detection is a challenging task due to their wide variations in appearance and pose, and is
further complicated by variations in illumination and background clutter. Their proposed solution
is to use locally normalised histograms of oriented gradient (HOG) descriptors, arguing that local
shape information is well described by the distribution of local intensity gradients.

Images are divided into smaller regions known as ‘cells’, with each cell being used to compute
a HOG descriptor. To tackle the issue of illumination variance, they group cells into larger spatial
regions known as ‘blocks’, where each block is used to normalise the contrast of the cells within
them. Each block is then combined into a single feature vector which can be used for classification.
To improve the process of normalisation, which they demonstrate to be a critical component for
achieving good performance, they choose compute HOG descriptors on overlapping blocks. Despite
the seemingly redundant nature of duplicating cells within the final feature vector, they show that
the resulting increased density of block normalisation greatly improves performance.

Compared to the state-of-the-art at the time, the use of HOG descriptors greatly improved
results. HOG descriptors cue mainly on silhouette contours, so they note that as long as a human
is roughly in an upright position, then this method performs well even when limbs and body
segments change appearance and location. The method’s ability to perform well against a difficult
task with wide variations makes it a well-suited method for many other object detection tasks. For
this reason, HOG descriptors still remain in use as an effective and efficient approach for extracting
features [9, 31, 40].

2.4 Supervised machine learning

The aim of machine learning is to learn the underlying model that describes a dataset so that
new predictions can be made. Usually, we will know the target values for a set of samples within
a dataset, where this knowledge can be used to guide the process of learning. This is done by
validating that the hypothesised model is able to describe the data, and is known as supervised
learning. Without knowing the target values, then we must look for underlying patterns within the
data without the help of validation, and is known as unsupervised learning. This section focuses
on the supervised variant.

The most basic form of supervised learning is linear regression, which is a statistical method
used to predict continuous variables given an input of features. Given a line fitted to a set of data
points, a target variable ŷ can be predicted from an input feature x using the equation of a line

ŷ = c+mx, (2.4)

where c is the y-intercept and m is the slope of the line. More generally, this can be applied to an
arbitrary number of input features by making predictions from an n-dimensional line

hθ(x) = θ0 + θ1x1 + · · ·+ θnxn, (2.5)

where hθ(x) (replacing ŷ) is a hypothesis for a feature vector x, θi (replacing m) is the weight of
feature xi, θ0 (replacing c) is the bias term, and n is the number of features. This can be simplified
to

hθ(x) = θTx, (2.6)

where x0 = 1.
Figure 2.6 shows an example of linear regression under the simple two-dimensional case. The

residuals can be used to evaluate how well the fitted line describes the observed data points. For
example, we could use the mean squared error

J(θ) =
1

2m

m∑
j=1

(hθ(x
(j))− y(j))2 (2.7)
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where m is the number of data points, to define a cost function J that quantifies the error between
a hypothesis hθ(x) and the actual data points. The process of training a model such that new
predictions can be made thus becomes a problem of finding θ that minimises J(θ). Gradient
descent is an algorithm which attempts to solve this problem by computing the gradient of J(θ)
and updating θ in the direction that follows the path of steepest descent

θi := θi − α
∂

∂θi
J(θ), (2.8)

where α is the learning rate which controls the step size of each iteration. The algorithm stops
when J(θ) converges to a local minimum or after a certain number of iterations has been reached.
The use of gradient descent influences the use of the 1

2m term within the cost function; averaging
the error across all data points allows α to be robust against changes to m, and adding the 2 helps
to simplify the derivative.
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Figure 2.6: Linear regression. The green line shows the line of best fit given the observed data
points. In this example, c = 4 and m = 1. The fitted line is used to predict that y = 9 when x = 5.
The differences between the data points and the fitted line (shown in red) are known as residuals.

Linear regression works well when our target predictions are continuous variables, but pre-
diction tasks often take the form of categorising features into discrete outcomes, also known as
classification. In the case of binary classification, a simple workaround could be to assign one
category to the value 0, and the other to the value 1. Then, we can fit a line to the data using
linear regression and use the centre value 0.5 as a threshold point to partition the data into two
classes. The partition used for classification is also known as the decision boundary. However, we
can see from Figure 2.7a that this solution does not work too well. Hypotheses can correspond to
values below 0 or above 1, and outliers consequently have a large impact on the decision boundary,
even when it is clear that the decision boundary should not be changed.

To overcome these shortcomings, the sigmoid function

g(z) =
1

1 + e−z
(2.9)

is used to transform the range of hypotheses

hθ(x) = g(θTx) (2.10)

such that 0 ≤ hθ(x) ≤ 1. This method is known as logistic regression, which is an adaptation
to linear regression for solving classification problems. A nice property of logistic regression is
that a hypothesis hθ(x) becomes equivalent to the probability that y = 1. As in Figure 2.7b,
we can use this for classification by setting a threshold at 0.5 so that the most likely outcome
is predicted. Alternatively, the probability output could be used as a single component within a
broader decision-making model.

As with linear regression, we can train a model to make new predictions by using gradient
descent to find θ that minimises J(θ). However, the use of the non-linear sigmoid transformation
results in the cost function from Equation 2.7 to be non-convex. In other words, the function has
many local minima and will cause gradient descent to converge to a point other than the global
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Figure 2.7: Linear regression versus logistic regression for classification. The central blue line is
a threshold at y = 0.5, where a decision boundary is modelled at the intersection of the fit. a)
In linear regression, the addition of the orange outlier drastically affects the slope of the fit. b)
In logistic regression, the decision boundary with and without the addition of an outlier remains
unchanged.

minimum. To solve this, the following cost function known as log loss (or cross-entropy loss) is
used instead

J(θ) = − 1

m

m∑
j=1

y(j) log hθ(x
(j)) + (1− y(j)) log(1− hθ(x(j))). (2.11)

The purpose of log loss is to evaluate how well the estimated probabilities match the actual class
labels. We can see that the function is composed of two terms: one multiplied by y(j), and the
other multiplied by 1 − y(j), where y(j) is the class label for sample j. Thus, depending on the
class label, only one of the two terms are used to contribute to the error. In each case, by taking
the negative log of the probabilities, the penalty of the cost function increases exponentially as the
estimations diverge from the class labels. This property means that the function will be convex,
and hence allows the use of gradient descent to find a global minimum.

2.5 Summary

We have reviewed the relevant literature needed to support the design and development of a
computer vision pipeline, specifically for the task of detecting type II solar radio bursts. We
investigated what is currently the sole methodology used to solve the problem of detecting type II
solar radio bursts. Although we cannot directly compare the results between the evaluated method
and our own method due to the difference in datasets (and notably, the difference in wavelength
domain), the existing methodology serves as a valuable source of known pitfalls and potential
solutions specific to the detection of type II bursts. We also investigated works that have made use
of prior knowledge to aid in the task of detecting solar radio bursts. Specifically, we looked at how
the known drift model of type II bursts has been used to normalise their appearance, and how the
known properties of the background has been used to help remove it from the data. Given that
the effective use of data-driven models is impeded by the limited access to real-world examples,
we aim to utilise and expand the existing ideas of using prior knowledge to complement the use of
data-driven models.

In order to make use of data-driven models, we investigated techniques that are able to describe
image data with meaningful features. We reviewed the Histogram of Oriented Gradients (HOG)
algorithm, which was originally applied to the task of detecting humans within images. Given
the geometrical nature of radio bursts in 2D space, we find it appropriate to utilise a shape
descriptor for extracting relevant features. It was noted how the method was robust to variances
in illumination, background clutter, and body/limb appearances. This transfers well to the task
of radio burst detection, since we need to be robust against changes in intensity levels, overlaps
with irrelevant signal, thickness and length of the burst, as well as any other complexities such as
band-splitting. It was noted that the method performed well as long as a human was roughly in
an upright position. Thus, similar to the work of Lobzin et al. [28], we aim to use prior knowledge
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of the type II burst drift model to normalise the orientation of burst signal, thereby enabling the
extraction of consistent HOG features.

Popular algorithms such as HOG already have existing implementations that are well tested,
very efficient, and accurate to the original methodology described. However, the implementation of
these algorithms are designed to work with images, and hence expect the input to take the form of
unsigned bytes. Therefore, to capitalise on the existing efforts of the computer vision community,
we must first normalise the intensity values of our data to be in the fixed range of 0 – 255. One
caveat to this requirement is the fact that the range of intensity values within our data is very
wide, so we must normalise the intensity range in such a way that preserves the useful signal while
maintaining a high degree of contrast. We choose to use the sigmoid function to transform the raw
intensity values into a fixed range, allowing extreme values to be clipped to an upper boundary
while the contrast of the usable data is stretched. However, due to the sigmoid function operating
on individual values, we cannot guarantee that this procedure will result in a suitable normalisation
of contrast for all data samples. Therefore, we have reviewed an adaptive procedure, histogram
equalisation, which utilises a histogram analysis to spread out the intensity values across the usable
range of values.

Finally, we reviewed the use of supervised machine learning algorithms to create data-driven
models. We introduced the logistic regression algorithm, a popular and simple statistical method
used to classify features into binary outcomes (positive or negative). We will use logistic regression
to model a decision boundary of HOG features by training the model on a selection of real-world
events. We have looked at how cost functions can be defined and minimised to optimise the
generalisability of parameters. Since the process of selecting events will require a mapping from
pixel-wise annotations into discrete-valued parameters, knowledge of using cost functions will help
us to define parameters that generalise well to our dataset. Once we have a model that is able
to effectively classify between burst and non-burst signal, we will apply the classifier to a sliding
window–based detector to extract tightly localised regions that contain burst signal. We will later
take advantage of the probabilistic nature of the model by utilising the continuous predictions
within a segmentation-based procedure.

11



3 Data

In this study, we use data observed by the WAVES [5] instrument aboard the Wind spacecraft,
which has been collecting data since its launch in 1994. The instrument consists of two bands of
radio receivers: RAD1 operating at 20 – 1,040 kHz, and RAD2 operating at 1.075 – 13.825 MHz.
Each band consists of 256 linearly spaced channels. It is very uncommon (∼3% of cases) for type
II bursts to be solely visible within the extremely low frequencies of RAD1, so we exclusively use
RAD2 in this study.

3.1 Collection and annotation

We source our data from NASA’s public archive1, where the data has been averaged into minute-
long samples. Their event catalogue2 of DH type II bursts is used to collect positive examples.
The catalogue contains a collection of 511 events from 1997 – 2016 which have been found through
so-called “radio-loud” CMEs. The CMEs are called radio-loud due to their ability to produce type
II bursts, which can be seen in Figure 3.1.

(a) SOHO (b) Wind/WAVES

Figure 3.1: Example of a radio-loud CME (2013/07/04 21:00). a) Observation of the sun using a
coronagraph. The white circle represents an outline of the sun, and the surrounding grey disk is
used to block the sun’s glare. A CME is seen being ejected from the sun. b) The produced type
II burst as a result of the CME in 3.1a.

We build a catalogue of negative samples by considering two sub-classes: type III bursts and
‘background’. We sample type III bursts explicitly because their intense presence has the potential
to be a common source of false positives. The background sub-class aims to capture the general
day-to-day features of the data as well as any other prominent events. We use a catalogue3 of
automated detections for the type III bursts, and we consider any event outside of the type II
and type III burst catalogues to be the background. Because we consider type III bursts from an
automated catalogue, there is the risk of sampling data that does not actually contain a type III
burst. We consider this to be acceptable because we are only concerned about the detection of type
II bursts. In fact, by including samples that have proven to fool an existing automated model, then
their inclusion may help to prevent our own model from suffering from the same shortcomings.

We use the reported starting times from each of our three catalogues (type II bursts, type III
bursts, and background) to create three-hour windows: 15 minutes before the event and 2:45 hours
after. We then filter out any negative windows such that none of our events overlap with each
other. We annotate a selection of 283 type II windows by overlaying the bursts with a pixel mask.
Harmonics of the burst are annotated separately (see Figure 3.2 for the possible annotations). The
general quality of annotations have been verified by an expert, although it is difficult to guarantee
the correctness of fine-grained details such as annotation at pixel level and harmonic classification.
Further details on the dataset used to train and test our model can be found in Section 5.1, and a
list of events used can be found in Appendix 1.

1https://cdaweb.gsfc.nasa.gov/pub/data/wind/waves/wav_h1/
2https://cdaw.gsfc.nasa.gov/CME_list/radio/waves_type2.html
3ftp://ftpbass2000.obspm.fr/pub/helio/hfc/obsparis/frc/rabat3/
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(a) (b)

(c) (d)

Figure 3.2: Type II burst annotations. a) One harmonic (white). b) Two harmonics (+green). 3)
Possibly three harmonics (+blue). d) Possibly two distinct events (+red).

3.2 Challenges

3.2.1 Data properties

One of the challenges faced with processing scientific data is the presence of information that is
either noisy or of low contrast [24]. This can be an issue for many feature extraction techniques such
as those relying on analysing intensity gradients; noisy information may produce strong gradient
responses, whereas useful information may not. Radio astronomy in particular is no stranger to
this phenomenon [42]. Figure 3.3 shows how man-made interference can severely corrupt the signal
of certain frequencies observed by Wind/WAVES. In addition, the galaxy produces a constant
stream of random Gaussian noise that defines the background of our data. This effect can be
seen throughout all of our examples (e.g. Figure 3.2). While the intensity distribution of the
background is clearly defined, the arbitrary signal strength of other emissions can make the data
more difficult to process. Figure 3.4 shows two extremes of signal strength for type II bursts. Note
that for visualisation purposes, we clip the intensity values in our data to 1.3. For bursts that are
particularly strong, this can give the appearance of having homogeneous intensity values.

Figure 3.3: Radio Frequency Interference (RFI) from Earth [23]. The strong horizontal bands
(RFI) correspond to the frequency bands used by national radio stations. The severity of corruption
changes throughout the day depending on what part of the world faces the instrument.
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(a) (b)

Figure 3.4: Bursts of varying signal strength. a) A strong burst (1.3+ intensity). b) A weak burst
merged with the background (particularly in the case of the second harmonic).

Aside from the difficulties of general radio astronomy, the specifics of instrumentation and its
task (in this case: using Wind/WAVES to observe radio emissions from the sun) come with its
own unique challenges. The instrument itself requires daily calibration that produces a large block
of high intensity signal (Figure 3.5c), and sometimes observations can be missed (Figure 3.5d).
Both calibration signals and missing data correspond to sharp changes in intensity, so we must
make sure our detector is robust to these issues. Fortunately, missing observations only account
for ∼2.3% of samples, and it is rare for consecutive samples to be affected (Figure 3.6). Therefore,
it is unlikely that type II bursts will be significantly occluded.

(a) (b)

(c) (d)

Figure 3.5: Some examples of non–type II signal. a) The usual low intensity background has been
overpowered by a type III storm. b) A type II burst is seen amidst a cluster of type III bursts. c)
Calibration of the instrument results in high intensity signal to span the entire frequency range.
d) Periods of missing data usually affect the entire frequency range and can sometimes affect
consecutive observations.

When observing the sun, the emissions of type II bursts are one of many classes of emissions
that can be produced. Non–type II emissions could potentially cause issues with misclassification:
either as false positives, through the emissions having type II–like features; or false negatives,
through the emissions occluding positive events. Figures 3.5a & 3.5b show examples that may
cause difficulty with misclassification. In the event that bursts are still detected successfully,
distinguishing the boundary between the type II signal and the overlapping non–type II signal still
remains a challenge for segmentation.
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Figure 3.6: Probability of consecutive (temporal) samples being affected by missing data. We use
our type II windows to estimate the probability of a given sample x belonging to a chain of at least
C missing samples. Left) Probability given we know x is missing. Right) Probability for a random
x.

The signal strength of various emissions can vary widely between events. Signal of type II
bursts are usually weaker than other bursts and RFI, but there are many exceptions where the
opposite is true. The strength of type II signal may also vary within the same event. A burst
may have sporadic rises in intensity (Figure 3.7c), and harmonics are often weaker than their lower
order counterparts (e.g. Figures 3.2c & 3.4b). As before, there are many exceptions (Figure 3.2b).
Furthermore, as lower frequency emissions correspond to signal further away from the Sun, the
intensity of type II bursts will naturally decrease over time [16]. Because we are using data from the
lower end of the radio spectrum, this often results in the intensity to drop below the background.
The variances of intensity in both relevant and irrelevant signal could make it difficult to classify
the bursts effectively using intensity-based features. In an attempt to prevent issues with data
quality impeding the quality of our detector, we consider the use of preprocessing techniques to
alleviate the issues.

When plotting a burst as a spectrogram, its shape is a consequence of how it drifts through
frequencies over time; it is shown in Section 2.1.1 that drift rate — and therefore a burst’s cur-
vature — is dependent on frequency. In general, the curvature will be vertical at the higher
frequencies, curved around the mid-to-lower frequencies, and then horizontal at the lower frequen-
cies. This effect can be seen throughout all of our examples such as in Figure 3.4. However, the
specifics of the frequency-drift dependency vary widely between events and is a factor of initial
drift rate and harmonic order. Its state may also suddenly change in response to changes of state
in the sun. The starting frequency and duration of a burst will also significantly affect its overall
shape, and even bursts that share the same properties can present large differences in appear-
ance. Figures 3.7a & 3.7b show the extreme differences in appearance due to differences in starting
frequency. Figure 3.7c shows that even when a burst is large, its appearance may be more similar
to the smaller bursts due to the visible portions of the burst being sporadic. To get around these
issues, we consider detecting bursts in segments as opposed to the full event all at once. However,
this introduces a new challenge of reconstructing the full event from the smaller segments. To
simplify the tasks of detection and reconstruction, we also consider normalising the shape of bursts
with respect to the frequency-drift dependency.
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(a) (b) (c)

Figure 3.7: Different sizes of bursts. a) The burst spans the entire frequency range and most of
the temporal window. b) The burst covers a very narrow frequency and temporal range. Its low
starting frequency means that most of its signal is outside of the visible frequency range. c) A large
burst, but most of its signal has faded into the background with intermittent periods of higher
intensity.

3.2.2 Variability of solar activity

The sun is a complex, dynamic entity that changes in behaviour over time; its level of activity
periodically changes as part of an ∼11-year cycle (see Figure 3.8; sunspot data collected from
the World Data Center SILSO, Royal Observatory of Belgium, Brussels [37]). Solar cycles have
been sequentially enumerated since 1755, with our dataset covering almost the entire duration of
cycles 23 & 24 (1997 - 2019). Throughout each cycle, the sunspot number (SSN) roughly follows a
Gaussian distribution, where the SSN provides a good measure of solar activity. The distribution’s
peak, and therefore activity, varies cycle by cycle. There is a close connection between the SSN
and the number of type II bursts, even in the presence of a double peaking cycle such as cycle
24 [18]. Around 50 type II events were observed during 2002, cycle 23’s most active year; and
no events during 2009, its least active year. Relative to cycle 23, cycle 24 corresponded to a 38%
decrease in type II events. It has been one of the weakest cycles since records began, making it a
particularly poor period for producing data.

The varying levels of activity influences the occurrence of all solar events, which can make
the challenges seen in Figures 3.5a & 3.5b more prevalent. If the levels of solar noise varies with
time, then this could make it difficult for our detector to learn to ignore its corresponding features.
Furthermore, because we only have access to cycles 23 & 24, it is difficult to validate that our
detector will maintain its effectiveness in periods of stronger activity. It may also be the case that
the appearance of type II bursts change enough between cycles to make their feature representations
diverge from the original training context. Compared to cycle 23, shocks in cycle 24 survived over
a larger distance from the sun; 60% of bursts in cycle 24 ended below 0.5 MHz, whereas only 42%
did in cycle 23 [18].

In Chapter 5, we experiment with training separate classifiers for different levels of solar activity.
The aim is to assess which performs better: reducing the variance caused by solar activity through
activity-specific classifiers, or utilising all training samples in a single classifier to better generalise
to the variances outside of solar activity.
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Figure 3.8: Solar cycles 1 – 24 (1755 – 2019).
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4 Methodology

4.1 Overview

4.1.1 Data preprocessing

Preprocessing the data prior to feature extraction can help to alleviate the issues discussed in
Section 3.2, though care is needed to ensure that the existing issues aren’t being amplified even
further. Noise removal techniques are likely to degrade the overall quality of the data, and in par-
ticular may have the greatest affect on the already problematic low contrast information. Similarly,
contrast enhancement techniques are likely to worsen the influence of noise. Thus, our goal is to
find the optimal trade-off between noise removal, preservation of signal, and contrast enhancement
(see Section 5.2 for an analysis of this trade-off).

To remove the background noise, we propose to use a two-stage approach which specifically
targets the Gaussian nature of the background. Our first stage consists of an intensity analysis to
identify the values which fall within the intensity distribution of the background. We use a sigma
parameter to partially remove the noise in favour of preserving the useful signal that overlaps
within this intensity range. Our second stage aims to remove the remaining noise by removing
small groups of spatially connected values. We choose not to target RFI or calibration signals
for noise removal since they cannot easily be removed without being detrimental to the signal of
interest. Contrary to the background noise, these sources of noise consist of predictable spatial
patterns, so we instead rely on the classifier’s ability to learn to ignore them. We attempt to
restore missing measurements by applying a filter over the missing values to capture information
from neighbouring samples.

The sensor data used in this study consists of continuous intensity values that are boundless,
so it is necessary to normalise these values to a fixed range before we can make use of standard
algorithms that expect unsigned bytes as input. A linear mapping cannot be used since extreme
values would cause significant compression to the usable intensities. We instead use the sigmoid
function to clip extreme intensities to the boundary values, which consequently allows the us-
able intensities to cover the full range of possible values. We also enhance the contrast by using
histogram equalisation (HE) to spread out the intensity values. For general application, we give a
rough guideline of how to choose suitable parameters, with a more in-depth analysis being given
for Wind/WAVES in Section 5.2.

(a) (b)

(c) (d)

Figure 4.1: Preprocessing pipeline. a) Raw signal data with a period of no measurements. b)
Applying a filter over the missing period to restore it. c) Removing a portion of the background
distribution. d) Removal of small objects. For visualisation purposes, the intensities of a & b are
clipped to 1.3, and the contrast of c & d has been corrected using our normalisation. In practice,
we apply our normalisation after the background has been fully removed.
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4.1.2 Physics-informed localisation

Given the geometrical nature of the bursts’ structure in 2D space, we choose to approach their
detection as an object recognition problem. However, we recognise that traditional object detection
techniques such as as uniform sliding windows and pyramid scaling do not translate well to the
variances seen in the bursts’ spatial properties. This is because these properties are a consequence
of their physical properties, with the most notable being how they drift through frequencies over
time. We have seen in [2] how a burst’s change in drift rate can be well described by a function
of its frequency. Following [28], we choose to exploit this prior knowledge by integrating it into
our detector so that the problem of shape recognition can be simplified; and thus, allowing the use
of simpler machine learning models and fewer training samples. In their approach, they chose to
transform the data with respect to the frequency dimension such that the variance of the frequency-
dependency was removed. However, as they had only considered one of two spatial dimensions
during transformation, they had lost information as a result of not being able to capture the full
shape of the burst. Our method resolves this issue by considering both the frequency and time
dimensions during transformation so that the full description of the bursts’ curvature in time-
frequency space is captured.

We propose to utilise the known drift model to constrain the searched region of interests (ROIs)
to be in compliance with the curvature of type II bursts. We fully take advantage of this constraint
by searching for curved ROIs that are directly focused on the bursts’ signal. In addition, we
transform the curved ROIs into a rectangular grid to create a more suitable data representation
for feature extraction and classification. We demonstrate the effectiveness of integrating this prior
knowledge by utilising a simple detection pipeline based on sliding Histogram of Oriented Gradients
(HOG) windows and logistic regression. To overcome the discontinuities in the bursts’ signal, we
train our model to detect smaller segments rather than the full event at once. Figure 4.2 shows
an example of the detection pipeline. Following detection, we segment the bursts by filtering out
pixels with a low detection response. We also use the previous classification of the background to
refine the segmentations. Figure 4.3 shows an example of segmentation.

Figure 4.2: Detection pipeline. a) We use the drift model to scan 1D curves along the temporal
axis that correspond to the curvature of type II bursts. b) We expand the curves outward into
2D space and transform the regions into rectangular grids. c) We use sliding windows of varying
sizes to search for smaller segments in the grid. d) We compute and classify HOG features of the
windows (example corresponds to highlighted window in 4.2c).
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(a) (b)

(c) (d)

Figure 4.3: Segmentation pipeline. a) All detected windows in original image space. b) Density
map of the windows. c) Discarding low density pixels to produce an initial segmentation. d)
Refining the segmentation by discarding pixels that overlap with the background.

4.2 Data preprocessing

4.2.1 Background removal

Statistical subtraction
As in [35], we aim to estimate the background’s parameters so that it can be subtracted away.
The background distribution is Gaussian and varies depending on frequency, so in [35] they use
the previous 7 hours to calculate the mean and standard deviation for each frequency. However,
since extreme values may be several orders of magnitude higher than the background, we find the
mean as a metric to significantly overestimate the parameters. Using the median as an alternative
to the mean results in much better estimations, but only for channels unaffected by RFI. In order
to estimate the parameters more consistently, we need to use an approach that is able to ignore
non-background values. A simple solution would be to use all of our background windows to fit an
idealised Gaussian distribution, and then constrain the metrics to only consider values within the
resulting distribution. An even simpler solution would be to use the resulting distribution itself
as the background subtraction parameters. Figure 4.4 shows this approach in effect using a single
Gaussian for all frequency channels.
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Figure 4.4: Distribution of background intensities (all frequencies). The global distribution can be
described by a Gaussian curve (µ = 1.049, σ = 0.018). A threshold (e.g. 1σ) is used to remove a
percentage of the background’s lower distribution.
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However, any solution that relies on computing the parameters ahead of time are not robust
against changes to the distribution over time, so a better solution would be one that makes no
assumptions about the parameters of the distribution. Since we can make the assumption that
the distribution will always be Gaussian, we can use this knowledge instead to constrain the
parameters. Thus, we propose to use least squares to fit a Gaussian model to a histogram of
intensities, where the resulting fit will be used to extract the parameters used for subtraction.
After subtraction, any intensities below zero are clipped to zero. To compute the histograms, we
allocate an empirical intensity width of close to half a standard deviation (0.008) to each histogram
bin, using Equation 4.1 to calculate the number of bins to use. A histogram is computed for each
frequency channel over the previous 12 hour period, where the choice of using 12 hours is to
ensure enough information is available to estimate the parameters. If a fit cannot be made when
attempting to fit the Gaussian, such as when a frequency is dominated by RFI, then we increase
the resolution of the histogram bins to capture more data (we find a width of 0.001 to be sufficient).
Using this approach, Figure 4.5 shows an aggregate of the resulting parameters on our background
and type II samples.
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Figure 4.5: Estimated background parameters per frequency channel. It is evident that different
frequencies have different background parameters, which the use of a global threshold would fail
to capture. Because the peaks and troughs are independently captured in both classes, we can be
confident that this is not down to error in the estimation approach. There is a reasonably large
disparity in the estimated sigma for both classes, but since the pattern is preserved, it supports
the belief that the parameters do change over time.

Spatial connectivity analysis
Increasing the sigma parameter of the background removal has diminishing returns to the amount
of background noise removed, so we aim to avoid removing the full distribution of the background
in order to preserve the overlapping type II signal in this range. After partially removing the
background noise, the remaining background will appear as speckle-like noise, which can then be
removed separately. We avoid using a filtering based procedure (e.g. median filtering) since the
filter would be applied to both the background and the type II bursts, so we instead aim to target
the background independently.

Most of the background at this stage should be represented by the constant 0, so we create
a binary mask of our data to separate background from non-background by setting any non-zero
values to 1. We then group the non-background pixels of the mask into structured objects, using the
rule that any two pixels connected vertically or horizontally are considered to be part of the same
object. A threshold is then used to discard all objects that do not meet a specified minimum size
(Figure 4.6). Given the random nature of the noise, it is statistically improbable for the remaining
values to form large clumps of connectivity. On the other hand, the spatially correlated signals of
solar events should result in even isolated signals to make up much higher levels of connectivity.
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(b) Processed mask

Figure 4.6: Removing objects with low connectivity. Background pixels are white. a) We group
non-background pixels into objects and label them with their respective sizes. b) We use a threshold
(e.g. 5) to discard objects that do not meet the threshold size.

4.2.2 Restoration of missing measurements

As previously seen in Figure 3.6, it is uncommon for consecutive periods to suffer from missing
measurements. Standalone occurrences account for the majority of cases at 78%, with two or three
consecutive samples accounting for 11% and 5%, respectively. Therefore, we can attempt to restore
this data since we are very likely to have access to data in the immediate vicinity. For any instances
of missing data, we place a small filter over the samples to capture information from neighbouring
samples. For cases where we cannot successfully restore the data due to the consecutive period
being too large, we set the samples to be the same constant value as the background. As a result,
any periods of missing data should not cause any confusion to the classifier. We experiment with
different filter types and sizes in Section 5.2.

4.2.3 Intensity normalisation

We use HE to enhance the global contrast of our data by spreading out its intensity values.
Typically, HE is applied to images with n-bit integer channels, where the number of grey levels L
is known to be fixed at 2n. Since our data does not have a fixed representation, then we do not
possess a parameter L to inherently enable the application of HE. However, we can derive the
number of grey levels LI needed for an input image I by considering each grey level to represent
a fixed value width w

LI = round(
max(I)−min(I)

w
). (4.1)

To prevent extreme intensity values from causing LI to be very large, we use the sigmoid function

1

1 + e−gI
(4.2)

to map our data to [0.5, 1] prior to HE, where g is a gain parameter used to control the strength
of the intensity shift. In general, we find w = g

1000 to be a good value for enhancing weak signals,
and the value of g should be chosen based on the expected intensity range of type II bursts. We
can use the inverse of sigmoid as a rough guideline for assessing the suitability of the parameters
by calculating the interval

[ln(
0.5 + w

0.5− w
)g, ln(

1− w
w

)g], (4.3)

which represents the range of values that are able to satisfy the desired level of precision w in
the binning process of grey levels. Assuming g = 1 and w = 0.001, then we get the interval
[0.004, 6.907], which is in agreement with our empirical observations of type II burst intensity
values (after background subtraction). Another option for choosing w is to choose the lowest value
that has reasonable demands on memory and computation time. The interpretation of reasonable
is discretionary, and may be a factor of the real-time sampling rate, or the number of archived
samples being evaluated. Figure 4.7 shows the performance when varying the number of bins.
For our dataset, we find the optimal parameters in Section 5.2 by evaluating the parameters of
intensity normalisation and background removal in unison.
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Figure 4.7: Growth of time and memory cost against number of bins used in HE. The perfor-
mance remains steady for LI ≤ 50,000 and then begins to be much more relatively expensive for
LI ≥ 500,000.

When scaling the intensity values from the continuous domain into the discrete domain, we
test both global and temporal-wise scaling. Since the transformation of intensities during HE is
globally monotonic, the enhancement of weak signals may be conditional on the overall distribution
of intensities within the considered window. By applying the scaling to each temporal sample
independently, we violate the monotonic rule in favour of increasing the intensity of weak signals.
If we consider the fact that both the slope and intensity of type II bursts decrease with frequency,
then the temporal samples that contain weak signals will typically contain less non-background
signal. Therefore, the enhancement of these signals will be less restricted. An example of this can
be seen in Figure 4.8. However, the presence of RFI (and possibly harmonics) may make this effect
too inconsistent to be useful. In any case, HOG’s local block normalisation will help to extract
similar features from both low and high intensity bursts.

(a) No HE (b) Global scaling (c) Temporal-wise scaling

Figure 4.8: Effect of using HE with different approaches to scaling. a) Without HE, the intensity
of the type III burst severely limits the dynamic range of the window. b) The use of HE allows
the intensities to be more evenly distributed; the type II burst can now be seen. c) The effect of
temporal-wise scaling is quite subtle, but the end result is a stronger contrast between the burst
signal and the background.

4.3 Localisation

4.3.1 Physics-informed region of interest

Rectangular ROI
At test time, we constrain the ROIs to comply with the frequency-drift dependency of type II
bursts. We use the drift rate model from Section 2.1.1 to define a relationship between frequency
and offset in time, which enables us to derive the corresponding aspect ratio of our ROIs from the
frequency range being evaluated. In doing so, we guarantee that any detections are constrained to
the possible physics of type II bursts. However, within this set constraint, the traditional approach
of using rectangular regions fails to take advantage of our prior physics knowledge to reduce the
variance of the bursts’ feature representations. Specifically, the signal at different frequencies
presents variance with respect to its orientation, which consequently implies variance in the ROI’s
signal-to-noise ratio (SNR), where the point of maximum curvature contains the lowest proportion
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of signal.

Curved ROI
To overcome these issues, we instead use the drift trajectory curve itself, i.e. the mapping between
frequency and time offset, to model the shape of our ROIs. A 2D curved region is constructed
from the 1D drift curve by expanding it in the direction of its normals. Due to the curved nature
of the region, we ensure that the focus remains directly on the type II bursts themselves. Thus,
we remove the variance of the SNR by maximising it at all frequency ranges. We also remove
the variance of the bursts’ shape caused by the frequency-drift dependency by straightening out
the curved region into a rectangular grid. In all, this reduction of variance allows our problem
to be greatly simplified. By normalising the bursts’ shape — and therefore its resulting features
— to be free from the influence of the frequency dimension, then the separation between type II
and non–type II features should be much more apparent. Therefore, the use of simple machine
learning models paired with our limited number of training samples should still be able to model an
appropriate decision boundary. The transformed data representation also benefits from facilitating
the application of standard image processing and computer vision techniques since these techniques
are often inherently designed to work on matrices.

We straighten the curved region by parameterising the drift curve by arc length, which allows
us to traverse the curve with respect to the distance travelled along it. We discretise the expansion
of the curve by sampling both the curve and its normals at a rate of one sample per unit of
distance. The transformation between the curved region to a rectangular grid then becomes a
simple case of transposing the normals to columns in the grid. Because of the unit sampling,
the dimensionality of the original and transformed ROIs are equivalent with respect to thickness
and length. Therefore, we ensure that all information and spatial context is preserved. As a
proof of concept, we use nearest-neighbour interpolation when sampling the pixel coordinates.
An illustrated demonstration of the creation and transformation of the curved region is shown in
Figure 4.9, and a precise definition of the process follows.

Figure 4.9: Creating and re-shaping the curved region. The drift trajectory curve (black dotted-
line) is expanded along evenly spaced normal vectors in each direction to add thickness to the
curve. The pixels are sampled along each successive normal vector to get the re-shaped output
(grey).

Curved region: creation and transformation
Recall the drift rate model from Equation 2.1 in MHz/s, which states how the drift rate changes
depending on frequency:

−df/dt = αfψ, (4.4)

where α and ψ is a scaling factor and power index on the frequency f , respectively. The drift rate
describes the rate (in seconds) at which a burst decreases in frequency (in MHz). By inverting the
model, we can use it to describe the cumulative increase in seconds from ∞ up to f

dt/−df = (αfψ)−1. (4.5)

Thus, for a range of frequencies, we can trace out the drift trajectory within time-frequency space.
Let Rt (seconds) and Rf (MHz) represent the temporal and frequency resolutions of the data, as
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well as It and If to represent the temporal and frequency indices of the data (image I). We can
model the drift trajectory in image space by scaling α by Rt and substituting f as fmax − RfIf ,
where fmax is the maximum frequency of the data. Representing the drift trajectory as a mapping
between If and It in image space is then given as

It(If ) = (Rtα(fmax −RfIf )ψ)−1. (4.6)

We can parameterise the mapping by introducing a parameter δ in place of If to get the following
position vector

~r(δ) =

[
δ

It(δ)

]
=

[
If
It

]
, 0 ≤ δ < n, (4.7)

which can be used to trace a curve of the drift trajectory in image space for all n frequency channels.
We can then define a function which gives the distance travelled along this curve up to the value δ

s(δ) =

∫ δ

0

‖~r ′(δ)‖ dδ. (4.8)

The next step is to find the inverse function δ(s) such that we can find δ from an arbitrary distance
s. Let δ(s) ≈ δε, given that δε satisfies the minimum value of |s(δε) − s|, 0 ≤ δ ≤ n−1

ε , i.e. we
integrate numerically by incrementing δ by a small constant ε to find the corresponding value of
s(δ) that closest matches our input s. We then reparameterise the drift trajectory function ~r(δ)
by arc length such that we can find the pixel coordinates for distances travelled along the curve

~r(s) ≈ (~r ◦ δ)(s), 0 ≤ s ∈ N < `, (4.9)

where ` is the total length of the curve defined as round(s(n− 1)).
We compute the derivative of ~r(s) numerically to approximate the unit tangent vector, which

we then rotate by 90° to get the unit normal vector

n̂(s) ≈
[
0 −1
1 0

]
~r ′(s). (4.10)

Given a desired thickness τ of our ROI, we expand the curve in the direction of its normals by
scaling n̂(s) by half of the thickness in each direction. We do this in τ steps such that we have one
normal vector per unit of thickness, where each step is given by 0.5τ − k − 0.5, 0 ≤ k < τ . Thus,
we define a function ~r(k, s) which takes as input a two-dimensional step along the curve in terms
of thickness and distance and outputs the corresponding pixel coordinates

~r(k, s) ≈ ~r(s) + (0.5τ − k − 0.5)n̂(s). (4.11)

After rounding the coordinate values to the nearest integer, we map the original ROI to a τ × `
matrix T by sampling the pixels in our image I along the normals for each unit of distance along
the curve

Tks = Iround(~r(k,s)). (4.12)

4.3.2 Parameter discretisation

In Section 4.3.1, we define a way of encapsulating the shape of type II bursts using three parameters
related to their appearance: drift rate, length, and thickness. To utilise these parameters in
a detection setting, we must map each of the parameter’s continuous distributions into a fixed
number of discrete parameters. Ideally, our discrete parameters should generalise well to the real
distribution. We aim to achieve this goal by using optimisation techniques to minimise the error
between our discrete and ground truth parameters. Our ground truth annotations do not state
these parameters explicitly, so they must first be estimated from the pixel masks. We separate
harmonics into their own annotations so that their parameters are evaluated independently.

Figure 4.10 shows how the error of our objective functions for each parameter decreases as we
increase the number of parameters used. Using these trends, as well as some empirical reasoning
based on perceived variance and the total number of parameter combinations we deem acceptable,
we choose to use four drift rates, four lengths, and three thickness values. We increase our thickness
values by 20% to account for imperfect fits of the drift rate, and then again by a factor of two to
create a gradient between the burst and its surrounding background. These values are rounded to
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the nearest integer divisible by two so that the ROIs can be conveniently cropped in a detection
setting. Our final list of parameters are shown in Table 4.1. We note that after generating our
training samples, we found only two events that corresponded to a fitting of a fifth drift rate.
Therefore, we discard this value and keep the remaining four.
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Figure 4.10: Effect of number of parameters used on error.

Parameter 1 2 3 4

Scaling factor 1.47×10−4 6.19×10−5 9.54×10−5 1.21×10−4

Power index 0.25 0.58 0.82 0.5
Length (px) 42 74 132 164

Thickness (px) 5.33 (12) 7.42 (18) 10.28 (24) -

Table 4.1: Discrete parameters chosen. Drift rate is composed of a scaling factor and power index
pair. The initial thickness values are shown first followed by their adjusted values in brackets.

Drift rate
Given n desired drift rates, we define a n × p parameter matrix P which holds the parameters
associated with each drift rate (its scaling factor α and power index ψ; p = 2). We initialise the
state of each vector in P as [5.5× 10−5, 1.28], which is the reported best fit for DH type II bursts
[2]. We use the Levenberg-Marquart (LM) algorithm [33] to optimise the state of P in two stages.
First, we consider the definition in Equation 4.6 that defines the mapping from frequency to time
in image space from the drift rate parameters. Let this be represented as I(x, ~p) = y, where ~p is
a parameter vector of the drift rate, x is the frequency index, and y is the offset in time in pixels
for that frequency. To account for the arbitrary temporal position of the bursts within our set of
annotations A, we add an additional time offset term o to the mapping. For a given a ∈ A and
parameter vector ~p, the optimal o is found using LM by minimising the sum of squared errors

o(a, ~p) = argmin
o

(
∑
i∈a

(I(xi, ~p) + o− yi)2). (4.13)

We then optimise the state of P using LM by minimising ~e, which contains the errors for all
annotations. The error for an annotation a is computed by evaluating the error for all drift rates
in P and then taking the minimum error

ea = min
1≤d≤n

{ 1

|a|
∑
i∈a
|I(xi, Pd) + o(a, Pd)− yi|}, (4.14)

~e =
[
e1a e

2
a . . . e

|A|
a

]
. (4.15)

Length
In Section 4.3.3, we create our positive training samples by sampling all possible segment combina-
tions that meet our minimum SNR criteria. To define an objective function that complements our
approach to sample selection, we evaluate our lengths within a similar context by cycling through
the possible segment combinations and measuring the resulting SNR. For efficiency purposes, we
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consider the 1D case of SNR, where we measure the proportion of noise (non–type II signal) within
a window of the fitted discrete 1D drift curve.

Increased noise is a result of two possible outcomes: either the window’s length is longer than
the segment, or the window contains two segments with some noise in-between. We set the level
of noise as an objective to minimise to ensure our lengths generalise to the creation of high quality
samples. The error of samples containing too much noise is ignored to mimic the rejection of
training samples that do not meet the specified criteria. Since the quantity of training samples is
also important, we set a second objective to minimise the number of samples rejected. In addition,
a third objective is used to minimise the level of truncation resulted from the selected lengths being
too short to capture the full length of segments. The three objectives are weighted empirically
based on certain desires such as emphasising quality over quantity. The exact procedure used
for computing the error is detailed in Algorithm 4.1. We minimise the errors of all annotations
simultaneously using differential evolution [38], and include the rejection criteria as a parameter
to optimise.

Algorithm 4.1 Length error of annotation

Input
lengths . set of discrete lengths
allowed noise . maximum percentage of noise allowed within window
segment positions . starting and end positions of segments along the fitted curve

Output
error . combined error of noise, truncation, and sample rejection

Initialisation
list of noise
list of truncations
list of samples

for all segments do . starting segment
start← start position of starting segment
for starting segment up to all segments thereafter do . end segment

end← end position of end segment
real length ← end− start
/* discrete length must be ≥ real length unless max length < discrete length, in which

case we are forced to truncate the segment */
discrete length ← lowest length in lengths ≥ min(real length, max length)
if (start, discrete length) not in list of samples then

list of samples ← (start, discrete length)
noise← percentage of noise within window [start : start+discrete length]
if noise ≤ allowed noise then

list of noise ← noise
end if
if length = max length then

list of truncations ← percent truncated from end segment
break

end if
end if

end for
end for
eg ← 0 if list of noise is empty else mean(list of noise) . average noise %
et ← 0 if list of truncations is empty else mean(list of truncations) . average truncation %
er ← 1 - (length(list of noise) / length(list of samples)) . % of samples rejected
error ←

√
eg2 + (1.5et)2 + (0.5er)2

Thickness
We estimate the thickness of our annotations by taking the ratio between the number of pixels
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before and after skeletonising

τ̃ =
|a|
|sk(a)|

, (4.16)

where sk(a) is the skeletonised a. Given n desired thickness values, we initialise a vector ~τ with
the mean ratio of all annotations

τ̄ =
1

|A|
∑
a∈A

τ̃a, (4.17)

~τ =
[
τ̄ τ̄ . . . τ̄

]
. (4.18)

Let h(τ) be defined such that the nearest element greater than or equal to τ in ~τ is returned, or
max(~τ) if no such element exists. We optimise the state of ~τ by using Powell’s conjugate direction
method [34] to minimise the vector ~e

ea = |τ̃ − h(τ̃)|, (4.19)

~e =
[
e1a e

2
a . . . e

|A|
a

]
. (4.20)

4.3.3 Sampling training segments from annotations

In Section 4.3.2, we choose a fixed number of discrete parameters to use in our segment detector.
Prior to detection, it is necessary to train a classifier with examples that match the same setting as
the detector — however, our annotations only contain information with respect to pixel coordinates
and not the parameters used in our ROIs. Therefore, in order to train a classifier with positive
examples, we must first divide our annotations up into smaller segments that are constrained to
our chosen discrete parameters.

To determine which of our discrete parameters fits an annotation the best, we use the same
criteria used in Section 4.3.2 to measure the error of a fit. For drift rate and thickness, these
measures correspond to Equations 4.14 & 4.19, respectively. The length parameter is different
because there is a one-to-many relationship between an annotation and the number of segments it
has. Given that both the length of segments and the length between segments is unconstrained,
then it is impossible to consider each segment as an isolated instance when fitting our limited
number of fixed parameters to them. For example, we may have two segments close enough
together such that the second segment is automatically included in the fit of the first segment.
Even in a scenario where each segment can be fitted perfectly with its real length, it is still
reasonable to want to include nearby segments within the same fitting as this would provide the
classifier with more information relevant to type II bursts. Figure 4.11 shows several valid contexts
in which a set of segments could be fitted. Since there is no single correct solution, we consider all
possible solutions when dividing our annotations up into training samples. This allows us to re-use
segments to boost the number of samples we can train our classifier with, which in turn should
help to increase our detector’s robustness to the variance of different segment contexts.

Figure 4.11: Fitting lengths to segments. Given the three segments shown, there are four possible
variations in the context they can be fitted within. In total, there are six unique fittings.

After fitting a drift rate and thickness to an annotation, we cycle through all possible length
fittings; we attempt to fit each of our lengths to each isolated segment in the annotation. Each
attempt is either accepted or rejected through a criteria based on the Intersection Over Union (IOU)
of the fitted ROI and the segment being evaluated (we use an empirical criteria of 30% IOU). This
means that even for standalone segments, we may sample them many times versus only considering
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the optimal sample for a particular segment. As long as the sample fits within our criteria, then
it is possible for a similar sample to appear within our training set. Therefore, the additional
information from sampling a segment within all possible contexts will be valuable to the classifier.
To encourage the generation of samples that contain multiple segments, we relax the IOU criteria
by also taking into account the level of intersection between the ROI and additional segments.
Note that we only measure the intersection and not the union of other segments. If the union of
the primary segment being evaluated is poor, then the resulting localisations will also be poor.
However, if we only manage to capture a small portion of the second segment, then that can still
be considered useful information to our classifier. For the implementation of selecting positive
training samples, see Algorithm 4.2.

Algorithm 4.2 Selection of positive training samples for an annotation

Input
lengths . set of discrete lengths
labels . labelled mask of segments
segment positions . starting positions of segments along the fitted curve
region coordinates . coordinates of the drift trajectory region for a given harmonic
IOU threshold . IOU threshold for accepting training samples

Output
list of samples

Initialisation
list of samples

for all segments do
start← start position of segment
for all lengths do

/* Make sure the region is long enough from start to extract an ROI from */
if start+ length exceeds length of region coordinates then

continue
end if
ROI ← extract ROI from labels using region coordinates from [start : start+ length]
IOU ← compute IOU between ROI and segment
/* If at least half of the IOU threshold is met, then we allow intersections with other

segments to inflate the IOU score prior to the final check */
if IOU ≥ IOU threshold ∗ 0.5 then

other intersections ← compute intersection % between ROI and all other segments
IOU ← IOU + other intersections

end if
if IOU ≥ IOU threshold then

list of samples ← (start, length)
end if

end for
end for

4.3.4 Detection

Traditionally, object detection techniques localise objects by sliding windows over the 2D Cartesian
coordinate space (x and y axes) of the image [10]. In a similar fashion, we also slide windows over
2D space — however, we replace the y coordinate with one that directly relates to the shape of
type II bursts: the arc length parameterisation of the burst’s drift trajectory. As well as sliding
our windows along a curved path, the windows themselves are also curved. We replace the width
dimension with the curve’s thickness in 2D space (by expanding the curve’s normals), and height
with the curved window’s arc length. In summary, our ROIs can be described by four spatial
properties similar to those found in traditional detectors, but have been adapted to relate to the
shape of type II bursts. These adaptations are: temporal position (x position), position along the
drift curve (y position), thickness (width), and length (height). The shape of an ROI in image
space is dependent on how the last three properties construct the ROI from the 1D drift curve.
Therefore, we also include drift rate, which controls the trajectory of the curve, as a fifth property
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to be varied for our ROIs.
The implementation of our sliding window setting follows. Firstly, we scan our selected drift

curves (that span the entire frequency range, shown in Figure 4.12) along the temporal axis.
Using the maximum discrete thickness, each curve is constructed into a 2D curved region which is
then straightened into a rectangular grid using the process in Figure 4.9. Since the transformed
coordinate space of the rectangular grid is equivalent to the desired coordinate space of the curved
region (with respect to length and thickness), all required operations — such as sliding windows
and axis scaling — can be done on the rectangular grid with ease to map their effects onto the
curved region. Axis scaling is required for creating the various length and thickness contexts of
our ROIs, since we achieve this in the same manner as traditional detectors: by scaling down
the space being searched (traditionally the image, but in our case the 2D drift region) so that
larger objects occupy the space within the fixed-size sliding window. This process can be seen in
Figures 4.13 & 4.14, which demonstrate the operations of scaling and sliding windows, respectively.
The one-to-one mapping between the transformed region and the original curved region can also
be seen. Since features are computed on the rectangular grid, the shape and resulting features of
burst segments become invariant to their position along its drift trajectory.

We estimate the probability of each window containing a type II burst segment by classifying
HOG features with logistic regression. The classifier is trained using the LIBLINEAR [13] library,
with L2 regularisation and dual formulation. We also tried training a linear SVM but found
performance to be near identical, albeit with significantly longer training times.

2 41 3

Figure 4.12: Temporal sliding. We slide all of our drift curves along the temporal axis in preparation
for constructing the 2D region. Curve numbers correspond to the those in Table 4.1.

(a) (b)

Figure 4.13: Axis scaling. White is the original region and grey is the down-scaled region. Down-
scaling the curved axes can be thought of as a compression along the direction of the curve. a)
Thickness axis. b) Length axis.
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(a) (b)

Figure 4.14: Sliding windows along the drift region. a) Sliding window on the original scale; b)
same sliding window on the down-scaled region.

4.3.5 Post-processing and segmentation

We begin by filtering out the input ROIs estimated with a low confidence score. In Section 4.3.2 we
padded our ROIs with some additional thickness, and in Section 4.3.3 we allowed some extra length
to be added onto our segments used for training. At this stage, we reverse both procedures by
cropping the thickness and truncating the length of all ROIs. The amount of extra length appended
is variable, so we test the optimal amount of truncation in Section 5.3. After this, we reconstruct
the remaining ROIs back into image space (e.g. Figure 4.3a). Since object detectors are prone to
detecting many ROIs for a single object, we must process all candidates with the aim of keeping
only the most robust detections. A common approach is to process sets of overlapping ROIs, where
either the non-maximum ROIs are suppressed, or an aggregate of the ROIs is computed from their
parameters. However, since our classifier is capable of detecting multiple segments at once, then
the corresponding gaps between segments will be present in the ROIs (e.g. Figure 4.11). Therefore,
neither of these approaches are well suited for isolating individual segments.

A solution to this problem is to compute an aggregate of the ROIs independently of their
parameters. We choose to do this using density-based aggregation. Specifically, we tally up the
number of times each pixel has been detected (i.e. pixel voting, see Figure 4.3b for example) and
suppress the pixels with a low total using an empirical threshold (e.g. Figure 4.3c). If we consider
the initial problem of needing to post-process candidate ROIs, the problem itself stems from the
degree of uncertainty associated with localising objects precisely. More optimistically, we can say
that it stems from a classifier’s ability to make a reasonable assumption despite the imprecision.
There are two possibilities of imprecision: either the detection is off-centre, or its corresponding
parameters are poorly matched. In practice, this is beneficial for generalising to the continuous
nature of the real world through the restricted finite scope of the detector. By considering the
density of all candidate ROIs, we effectively average out all aspects of imprecision by refining all
detected pixels towards the true continuous representation. Therefore, we are able to aggregate
ROIs of fixed parameters into flexible pixel level segmentations.

In general, we can assume that the refinement of pixels will converge to a single point as the
voting threshold increases. As we lower this threshold to produce higher quality segmentations,
one caveat is that we may introduce some weakly voted false positives. To overcome this, we use
a two-stage process which first detects segments using a high threshold, followed by segmentation
using a lower threshold. Any segments not detected in the initial detection stage are discarded.
We also discard pixels that overlap with the background known from Section 4.2.1. This can help
to improve the generalisability of the chosen thresholds by correcting segmentations that spill over
the edge (e.g. Figure 4.3d). We test the optimal configurations regarding detection, segmentation,
and background removal in Section 5.3.
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5 Experiments

5.1 Training set

In preparation for our experiments on activity-based classifiers, we group our events based on
the sun’s level of activity during the time of the events. We use the recorded SSNs to do this,
which we collect from the World Data Center SILSO, Royal Observatory of Belgium, Brussels [37].
Specifically, we use data that contains one sample per month, where each month has been smoothed
over a 13-month window. This smoothing is standard procedure for scientific analyses performed
on solar cycles [37]. Using the recorded SSNs over the duration of our data, we fit a Gaussian curve
to each cycle so that they can be split into three groups of solar activity. The splitting points are
defined by assigning each activity group to a fixed distribution within the Gaussian curves; we use
the central 40% for high, the outer 20% for low, and the remaining 40% for medium. This process
can be seen in Figure 5.1. The Gaussian splitting points have been verified by an expert as being
representative of their respective solar activity groups, and the legitimacy of using this approach
as opposed to other approaches that use the SSN directly has also been verified. This approach
also provides a more favourable setting for our tests, since the relative distribution of future solar
cycles can always be accounted for, but the absolute values of SSN (i.e. a cycle’s level of activity)
cannot.
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Figure 5.1: Splitting of solar cycles into high (red), medium (orange), and low (yellow) activity
periods based on Gaussian fitting.

Our positive training samples are generated from our ground-truth pixel annotations using the
method detailed in Section 4.3.3. For our negative samples, we use stratified random sampling to
preserve the distribution of properties found in our positive samples. During sampling, we treat
our negative sub-classes (type III bursts and background) distinctly, which in effect creates a 2:1
ratio between the negative and positive distributions. Firstly, we consider the number of event
windows and the distribution of solar activity levels within those windows. We sample a (stratified)
random selection of negative events from our event catalogues created in Section 3.1. The final
distribution of event windows for each class can be seen in Table 5.1. Within these windows, we
randomly select training samples that are stratified towards the parameters (drift rate, length,
and thickness) within our positive samples. We let the starting position of our samples along the
drift curve to vary freely, and we also let the temporal position to vary freely for our background
windows. For the type III windows, we constrain the temporal position of our samples to be
centred around the type III burst event. To add some variation to our training samples, we relax
the constraint by allowing the temporal position to vary by up to 40% of the sample’s thickness
(40% is chosen fairly arbitrarily based on the perceived thickness of type III bursts). Four samples
are randomly selected from each negative window to roughly match the total number of positive
samples. Because we aim to remove the background noise in Section 4.2.1, we check our random
samples against our strongest background removal to make sure some data is still retained. If not,
then we re-sample until our criteria is satisfied. An additional set of negative samples is created
through a single iteration of hard negative mining; we increase the size of our negative set by 25%
by choosing the highest probability detection from each negative window (such that we now have
5 samples per negative window as opposed to the original 4). This approach ensures that the same
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distribution of solar activity is preserved. The final distribution of samples and their parameters
is given in Table 5.2.

All Low Med High

Type II 244 49 89 106
Type III 242 47 89 106

Background 245 48 88 109

Table 5.1: Class distribution of event windows. A breakdown of the number of windows per activity
group is given.

All
Drift Length Thickness

1 2 3 4 1 2 3 4 1 2 3

Type II 982 19% 47% 15% 19% 36% 31% 18% 15% 37% 37% 26%
Type III 1210 20% 42% 18% 20% 47% 27% 14% 12% 33% 35% 32%

Background 1225 17% 41% 22% 19% 43% 26% 16% 15% 31% 34% 35%

Table 5.2: Class distribution of training samples. For each parameter, the table shows a breakdown
of how much their discrete values (shown in Table 4.1) contribute to the number of class samples.
It is evident that the hard negative mining has brought an imbalance to some of the parameters;
the lowest length and highest thickness is more likely to produce false positives.

5.2 Preprocessing and feature extraction

5.2.1 Evaluation and parameter tuning criteria

In total, we test the effects of 16 parameters spread across the following four procedures: back-
ground removal, intensity normalisation, missing measurement filtering, and feature extraction.
We tune the parameters using a hierarchy of three grid searches: background removal and inten-
sity normalisation first, filtering second, and feature extraction last. The procedures of background
removal and intensity normalisation are merged due to the strong interdependence of their effects.

To evaluate the performance of our parameters, we perform image classification with 10-fold
cross-validation on our training samples. Samples are grouped by their respective event windows
so that they always appear within the same fold. This ensures there is no contamination between
the training and test sets. The F-score metric (Equation 5.3) is used as the evaluation criteria due
to its summary of precision and recall (Equations 5.1 & 5.2), both of which we aim to maximise.
Because the number of training samples within the activity-based subsets are quite low (as low
as 20% of the original dataset), we choose to fine-tune a single set of parameters as opposed to
one parameter set per classifier to avoid the risk of overfitting. We consider two scores: one for a
general classifier trained on the entire dataset, and another for a specialised classifier composited
of three distinct classifiers trained on solar activity–based subsets. The mean of both scores is used
as the final evaluation criteria. On top of the existing cross-validation used, this approach helps to
provide an extra layer of confidence that the resulting parameters are robust to different training
and testing conditions.

Precision =
TP

TP + FP
, (5.1)

Recall =
TP

TP + FN
, (5.2)

Fscore =
2

Precision−1 +Recall−1
, (5.3)

where TP is the number of true positives, FP is the number of false positives, and FN is the number
of false negatives.

We perform an initial round of fine-tuning on our dataset prior to hard negative mining, in which
the resulting parameter set is used to search for hard negatives. After adding the hard negatives
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to our dataset, a second and final iteration of fine-tuning is performed. The final parameter set
can be found in Table 5.3. Between iterations, the optimal HOG parameters remained the same.
Thus, the tests performed in Section 5.2.2 use the HOG parameters shown in the table, and the
tests performed in Section 5.2.3 use the preprocessing parameters shown in the table.

Feature extraction HOG
Cell size (px) 42 (4× 4)
Block size (cells) 32 (12× 12)
Block overlap 3/4 (3× 3 stride)
Bins 10
Gamma correction No
Signed gradients Yes
Length padding (px) 12
Window sigma (px) 8
Normalisation L2-Hys (0.2 clip)

Background removal Adaptive
Sigma 0.5
Min size (px) 5

Intensity normalisation Sigmoid+HE
Gain (g) 10
Bin width g/1000

Filtering Mean
Height (px) 5
Width (px) 3

Table 5.3: Optimal parameter configuration. Left) Feature extraction parameters. Right) Prepro-
cessing parameters.

5.2.2 Preprocessing

Normalisation Adaptive Fixed None

Linear 82.63 82.92 82.95
Sigmoid 91.15 90.72 88.77
Sigmoid+HE 91.47 91.13 90.34
Sigmoid+HE (TS) 91.32 91.06 90.68

Table 5.4: Performance of various background removal and intensity normalisation procedures.
TS=temporal scaling.

Background removal
Table 5.4 shows that adaptive background removal outperforms fixed removal in all non-linear
approaches, with the advantage being in the range of 0.2 – 0.5 F-score. In cases where the adaptive
approach is inconvenient to use, such as for ground-based instruments that can only observe the
Sun for half the day, then the use of a fixed approach still remains to be a viable alternative. For
HE (the best performing normalisation procedure), the effect of altering the background removal
parameters is shown in Figure 5.2. Results for other normalisation procedures can be found in
Appendix 2. Both adaptive and fixed removal have similar trends throughout, where a low–
medium sigma threshold paired with a medium object size threshold generally provides the best
performance.

Understandably, the sigma threshold is the axis of greatest variance due to its aggressive ap-
proach of discarding a select range of intensity values entirely. The performance generally receives
a substantial drop after 1.5σ. For HE, Figure 5.3 shows the optimal trade-off between a too conser-
vative threshold versus a too aggressive one. The threshold’s effect on recall is the same for both
adaptive and fixed removal, where the performance gradually climbs to a peak followed by a steady
decline. The result of targeting the background too aggressively clearly has a significant impact
on the ability to detect weaker burst segments. The peak recall for both approaches occurs at an
offset, where the optimal thresholds are 0.5σ and 1σ for fixed and adaptive, respectively. This is
likely due to the higher estimate of the standard deviation parameter for fixed removal compared
to adaptive (Figures 4.4 & 4.5b). The same offset can also be seen in the false positive rate (FPR),
where a surprising spike occurs at the threshold of optimal recall. This effect is three-fold for the
adaptive approach, with a substantial ∼9% increase occurring relative to its neighbouring thresh-
olds, compared to a ∼3% increase for fixed. Consequently, this results in an adaptive 0.5σ to have
the highest score despite its lower recall. The cause of the spike in FPR is not apparent, but a
possible explanation is that enough weak type II signal is being removed such that its features are
similar to the remaining background. In this scenario, a slightly lower or higher threshold would
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Figure 5.2: Effect of background removal parameters (Adaptive vs Fixed Gaussian estimation).
Scores are aggregated by selecting the best performing HE parameters for a given combination of
background removal parameters.

either preserve enough type II signal, or remove enough background, such that their corresponding
features are more separable. A high threshold also appears to be associated with an increased
FPR.
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Figure 5.3: Effect of sigma threshold for adaptive and fixed background removal. Left) effect on
true positive rate. Right) effect on false positive rate.

Relative to the sigma threshold, there is less variance when altering the minimum object size
threshold because the effect is contextual rather than absolute. Assuming that the intensity of
burst signals are above the sigma threshold, then their spatial connectivity will likely be high
enough to be preserved. We can see that as the sigma threshold increases, there is a compounding
effect wherein the spatial connectivity of burst signals breaks down enough to be removed in the
second stage. Thus, in general, the variance of the object size threshold is positively correlated
with the sigma threshold. However, for the optimal threshold specifically (adaptive 0.5σ), the
range in scores is as high as the range of a 3σ threshold. Whereas the variance along 3σ highlights
the importance of preserving the burst signal, the variance along 0.5σ highlights the importance
of removing the background. This is reinforced by the observation that between an object size
threshold of 1 – 3, we see a difference in F-score of 0.8 for both 0.5σ and 3σ. However, the
direction of change is inversely correlated, indicating the difference between background removal
and preservation of burst signal.

Intensity normalisation
Table 5.4 shows that a naive linear approach to normalisation directly results in a substantial
decrease in classification performance: between 6.6% – 9.7%. The resulting dynamic range of the
image is likely to be much higher than the intensity range of type II bursts — so much so that a
large portion of type II burst signal may be removed entirely. The use of temporal scaling during
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HE reduces performance compared to global scaling, with the exception of when no background
removal is used. Performance is consistently improved by using HE on top of sigmoid normalisation,
especially when no background removal is used. Figure 5.4 shows the true strength of HE, where
the use of sigmoid normalisation alone makes achieving good performance dependent on choosing
the correct gain parameter. However, by using HE to balance the distribution of intensity values,
we effectively eliminate any variance associated with the gain parameter. When looking at the
effect that bin width has on performance, we begin to see a significant reduction when using a
precision level that’s too low. However, when using a reasonable level of precision, any variance
between the parameters becomes relatively minor. Using a bin width of at least g/1000 results in the
maximum difference in score to be 0.12. Thus, the normalisation procedure should be much more
easily adaptable to other instruments since good performance is not dependent on the parameters
chosen.
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Figure 5.4: Effect of HE parameters. Left) Comparison of sigmoid normalisation with and without
HE. Right) Influence of histogram bin width.

Filtering
We test three types of filtering procedures to capture neighbouring information as a replacement
for missing measurements: median, mean, and max. In general, max filtering tends to degrade
performance, median filtering preserves performance, and mean filtering boosts performance. The
degree of change is relatively minor, with a range of -0.22 – 0.21 F-score. In all cases, a width of
3 performs optimally, but the optimal height varies depending on the chosen width and filtering
approach.

3 5 7

7

5

3

1

91.45 91.48 91.39

91.53 91.47 91.41

91.54 91.50 91.38

91.46 91.51 91.42

Median

3 5 7

91.48 91.62 91.45

91.68 91.61 91.42

91.61 91.52 91.47

91.57 91.49 91.54

Mean

3 5 7

91.33 91.28 91.27

91.44 91.25 91.37

91.52 91.39 91.29

91.58 91.55 91.49

Max

91.28

91.36

91.44

91.52

91.60

0.0 0.2 0.4 0.6 0.8 1.0

Width

0.0

0.2

0.4

0.6

0.8

1.0

He
ig

ht

Figure 5.5: Effect of filtering parameters.

5.2.3 Feature extraction

As in [10], we use Gaussian spatial window smoothing with a sigma of 8 pixels, and L2-Hys block
normalisation with a clipping value of 0.2. They find square blocks to be more effective than
rectangular ones, with blocks of size 22 or 32 to be the best. Larger blocks are less adaptive to
local imaging conditions, and small blocks (12) are unable to capture valuable spatial information.
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With this in mind, we restrict our tests to use blocks of size 22 or 32. Cells of size 62 are found
to work best for human detection, which they expect to be application dependent. Our ROIs are
much smaller at a height of 12 pixels, so we test cells of size 22 – 42 to ensure compatibility with
our block sizes. They also find overlapping blocks during normalisation to be an important factor
for performance, so we test an overlap of 1/2 – 3/4. The optimal number of histogram bins was
found to be 9, so we test 9±3 bins. We also test the use of gamma correction and signed gradients,
as well as padding our ROIs length-wise with 6 – 18 additional pixels. The effects of varying all
parameters can be seen in Figure 5.6.
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Figure 5.6: Effect of HOG parameters. Each bar represents the highest score achieved for a
given parameter, and the white marker line shows the mean performance across all parameter
combinations. When showing the mean score, we fix the gradient range to use signed gradients,
with the exception of the gradient range plot itself.

Out of all HOG parameters, the parameter with the single biggest impact is by far the use
of signed gradients. By utilising the additional information in the 180 – 360 gradient range,
performance improves by ∼12% on average, or ∼9% when the optimal configuration is used.
Because HOG cues mainly on shape contours, we can expect the descriptive power to be highest
around the transition between burst signal and background. The thickness of our samples have
been explicitly padded to capture this transition, and the effect this has on our type II samples can
be clearly seen in Figure 5.7a. Two distinct horizontal strips can be seen where both sides of the
burst transitions to the background. The first strip should represent positive gradients, and the
second strip negative gradients. Thus, the inclusion of signed gradients means that the classifier
not only expects a response around the two strips, but also a match between a given strip and
its respective sign. This can help to reduce false positives against strong responses to off-centred
signals such as type III bursts, since our transformed coordinate space will typically distort their
shape to curve upwards. Since the type III burst would be at the edge of the window rather than
the centre, any gradients around the top strip would have the incorrect direction.
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Figure 5.7: Average gradient response of training samples by class. Training samples have a length
of 66 and a thickness of 12, and these dimensions will remain the same throughout all future
examples (Figures 5.11, 5.13 & 5.14)

As stated above, it is important that HOG is able to capture the transition between burst and
background. In Figure 5.7a, we can also see a strong response where the training samples have been
padded length-wise. However, there is also a less intense gradient that spans the entire thickness
and can be seen in all class samples. This is because we are forced to add dummy values — which we
choose as 0 to match the background — in place of non-existent coordinates when expanding ROIs
at the boundary. The resulting vertical strip is an undesirable effect, and the gradient response of
the strip is ∼19% greater in boundary type III samples compared to the average type II sample.
These type III samples account for ∼5% of all negative samples, so the aim is for the classifier to
learn when to ignore these gradients in the context of supplementary information. A secondary
benefit of length-wise padding is that bursts longer than the length of its window are able to supply
the classifier with more information. We can see this effect in Figure 5.7a, where the horizontal
strips extend to the end of the padded window. This likely explains why a padding of 12 pixels
performs better than 6 pixels, although performance starts to decrease as padding is increased
further, indicating that on average the additional pixels become less relevant. Interestingly, the
use of further padding after 12 pixels does actually perform better on average, just not when the
optimal configuration is considered. When using the optimal configuration, performance increases
by ∼4% relative to the use of no padding.

The use of gamma correction decreases performance by ∼2%. Since we already apply an
intensity transformation prior to feature extraction, using gamma correction on top of this likely
serves no meaningful purpose. Furthermore, the original inclusion of gamma correction was likely
tailored to combat the variances seen in natural images, such as illumination and shadows, which
are not present in our data.

The performance of the different block configurations are relatively steady except for the optimal
configuration, which performs ∼1% better than the next best configuration. The only difference
between the two configurations is the use of a 32 block size instead of 22, where a 42 cell size and
3/4 overlap is used in both cases. The result is a 125% increase in block size, which in fact allows
the block to span the entire 12 pixel height of the ROI. The ability to utilise all of the information
available along the thickness axis may be the reason for the fairly significant performance increase.

The number of histogram bins is the parameter with the least amount of variance, so choosing
the optimal value is not as crucial. When using a random configuration, almost all choices perform
equally well. However, the optimal value does still perform ∼0.5% better than the second best,
and the total margin is ∼1.2%. The optimal range is within 9 – 11 bins, with the middle value of
10 being the peak. Using 10 bins, Figure 5.8 shows the overall contribution of each bin by class.
As expected, the bins that contribute the most votes to the type II class are around the 90° and
270° mark (i.e. the vertical gradients). This is also true for the type III class — however, there is
a reasonably large disparity between type II and type III samples within the bins centred around
90° and 270°. In fact, the property of having the vertical gradients perfectly centred within their
respective bins may be the reason why 10 bins provides optimal performance.
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Figure 5.8: Vote weightings of orientation bins by class. Note that the chart shows votes ac-
cumulated using binary edge voting, as opposed to the interpolated voting used in the actual
implementation of HOG.

5.2.4 Solar activity–based classifiers

Table 5.5 shows a breakdown of results for solar activity. We can see that the use of a single
general classifier outperforms a composite of specialised classifiers by 1.3 points. However, we do
see quite a wide variation in scores for the specialised classifiers: low activity has 1.11 points ahead
of the general classifier, and high activity has 3.35 points below — equating to a total range of
4.46 F-score.

Classifier Precision Recall F-Score

General 93.47 91.24 92.34
Specialised 92.25 89.86 91.04

Mean 92.86 90.55 91.68

Low 92.86 94.05 93.45
Medium 93.90 90.28 92.06
High 90.56 87.47 88.99

Table 5.5: Performance of activity-based classifiers.

Performance is seen to decrease with activity, although a secondary factor to consider is that a
decrease in activity also corresponds to a decrease in training samples. Consequently, it is possible
that the variation in performance may not be reflective of the variation in solar activity, but may
instead be a result of the uncertainty associated with evaluating a small number of samples. We
therefore evaluate whether the variation in performance is statistically significant by measuring the
uncertainty of the general classifier at lower sample sizes. However, even if solar activity is indeed
responsible for the variation in performance, the same variation may also be present, regardless
of training conditions. Therefore, we also evaluate the general classifier’s performance on each
activity period separately.

Figure 5.9 showcases the two aforementioned evaluations. We can see that the variation in per-
formance is in fact associated with solar activity, and that the effect is also mirrored when training
a general classifier. As a result, we can conclude that the performance decrease of a specialised clas-
sifier is solely due to the decreased number of training samples, and that no combination of mixed
classifiers would be beneficial. With that said, the performance increase relative to the general
dataset is higher when using specialised classifiers for both low and medium activity. Performance
on the low activity dataset is 2.28% ahead of the general dataset when using a general classifier,
but the use of a specialised classifier results in performance to be ahead by 3.86%. Performance of
the general classifier appears to plateau given enough training samples, so if the increased relative
performance for certain specialised classifiers allow performance to scale better with more data,
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Figure 5.9: Activity-based classification performance. We compare the performance of specialised
classifiers on activity-based datasets (cross) against the performance of a general classifier on
activity-based datasets (circle). For reference, we plot the performance of a general classifier on
the general dataset (black) for varying amounts of training samples. Data points (dotted) represent
10 trials of random sampling with a class ratio of 4:5:5 (type II, type III, background); 10-fold
cross-validation is used for each trial. A 95% confidence interval (red) is shown for a random
sample to fall within the performance distribution of the general classifier and dataset.

then it is possible that some degree of activity specialisation may eventually outperform a general
classifier.

5.2.5 Failure-case analysis

ROI parameters
Figure 5.10 shows classification accuracy broken down by class and parameter value. The average
appearance of training samples by class and parameter can be seen in Appendix 3 for reference.
Type II samples perform the worst with an accuracy of 91%, compared to 96.9% for type III
samples and 97.9% for background samples.
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Figure 5.10: Classification accuracy by class and parameter value. Size of rectangles correspond
to number of training samples (larger sizes are positioned higher and to the left). Darker shades
indicate higher accuracy. Drift curve numbers correspond to those in Figure 4.12 & Table 4.1.

Longer lengths are associated with an increased accuracy rate regardless of class. For negative
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samples, a longer length makes it almost certain that the sampled signal violates the drift model of
type II bursts. Type II samples with a longer length may have an edge due to the increased SNR
as a result of the down-scaling. The effect of down-scaling also means that longer lengths require
more absolute padding to create the same perceived padding as lower lengths. It is therefore less
likely for longer lengths to contain extra burst signal during padding, and this may be why we see
a decrease in accuracy from a length of 132 to 164.

Interestingly, performance associated with the thickness parameter has a reasonably large range,
with higher values being more likely to be classified correctly for type II samples. Training samples
with lower thickness values seem to be more likely to capture additional signal to the left of the
burst during window padding. The reason for this is unclear, but it does mean that there will on
average be a weaker gradient response where the padding has taken place. As in the previously
identified cases where the classifier has returned positive (Figures 5.11a, 5.11e, & 5.27), this gradient
response seems to be an important feature for classifying positive samples.

The second drift curve provides a noticeable increase in accuracy for type II samples, likely due
to it holding the largest share (47% of type II samples). The opposite case is true for the negatives,
where the drift curve with the lowest occurrence is most accurate. This is partly expected due
to the influence of hard negative mining, although the increased performance may also be an
indication of the expected shape for either class. For example, type III bursts are mostly vertical,
but can also present curvature at the lowest frequencies due to their decreased drift rate. Drift
curves that contrast the expected curvature of type III bursts should therefore be less likely to be
misclassified as positive.

ROI gradient response
Figure 5.11 compares the average gradient response for correct and incorrect classifications by class.
Since the correct samples represent between 91% – 97.9% of all class samples, the corresponding
gradients match the gradients seen in Figure 5.7 very closely. On the other hand, samples that
have been incorrectly classified appear to deviate significantly from the average.

False positive samples appear to consistently have strong gradient responses that match the
general pattern of true positives. Type III samples in particular prominently feature two horizontal
strips as well as a strong response to the window padding. The two strips are not as straight
as the true positives, but are still straight enough to span the entire window, and hence the
corresponding type III bursts mimic the drift model of type II bursts. False positive background
samples don’t feature these strips as prominently, although activity can still be seen that loosely
represent similar features. Furthermore, while the response to window padding isn’t quite as strong
as true positives or type III false positives, it is still much stronger than average. Overall, the false
positive background samples don’t appear to be too different to the false negatives; however, the
stronger gradient intensities within the background samples seem to be the key difference that
separates the two.

(a) Type II - TP (b) Type III - TN (c) Background - TN

(d) Type II - FN (e) Type III - FP (f) Background - FP

Figure 5.11: Comparison of average gradient response between correct and incorrect classifications
by class. Top) Correct. Bottom) Incorrect.

ROI starting frequencies
Figure 5.12a shows the distribution of starting frequencies for our training samples. Type II bursts
are significantly more likely to start at the upper boundary since the actual starting frequency
may be above the data’s available frequency range. The frequencies of our negatives have been
uniformly sampled, although the requirement of needing enough data to fulfil the ROI’s selected
length ultimately results in a tailed distribution. The distribution may also be skewed towards
certain frequencies due to the process of hard negative mining. Many type III bursts have been
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introduced at the upper boundary due to presenting similar features to type II bursts at these
frequencies. This is also true for the low frequencies, where the drift rate of type III bursts begins
to decrease such that its signal presents curvature.

Figure 5.12b shows how starting frequency influences the rate of misclassification. It appears
that the abundance of type II training samples at the upper frequency boundary helps to decrease
the misclassification rate of these samples. Lower frequency ranges have a wide variation in mis-
classification rate, with the rate being as high as ∼25% for some frequency ranges. The curvature
of type II bursts at lower frequencies are less likely to align with one of the drift curves, and the
ability to learn the variations of misalignment is likely to suffer as a result of the low number of
training samples. The number of real-world events is limited, so it is not a viable strategy to rely
on new events to boost classification performance. However, at the cost of increased localisation
time, it may help to increase the number of searchable ROI parameters so that existing events can
contribute to a greater number of samples during our selection procedure, as well as there being
an increased chance for alignment. Alternatively, instead of choosing a limited number of drift
curves that aim to describe the curvature of the entire frequency range, it may help to optimise
multiple sets of curves for different frequency ranges. Another option would be to optimise the
selection of ROI parameters with respect to classification error, or even localisation error if using
a more advanced learning algorithm. Aside from issues of drift misalignment, we also investigate
how misclassification rate is influenced by length-wise ROI padding and hard negative mining.
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Figure 5.12: Distribution of starting frequencies for training samples by class. a) Overall distribu-
tion. b) Percentage of misclassified samples.

ROI padding
Figure 5.13 highlights a key difference between boundary and non-boundary type II samples: the
gradient response at the location of padding is much stronger in the samples at the upper frequency
boundary. Boundary type II samples represent ∼36% of all type II samples, so the classifier is
likely to contain some bias towards the gradient response at this particular location, and hence
may contribute to the disparity in misclassification rate across the different frequency ranges seen
in Figure 5.12b. We have also already seen how this particular gradient response is a common
theme amongst false positive samples (Figures 5.11e & 5.27), and that false negatives present the
response much more weakly (Figure 5.11d).

(a) (b)

Figure 5.13: Comparison of average gradient response between boundary and non-boundary type
II samples. a) Boundary samples. b) Non-boundary samples.

To evaluate the influence of padding and its resulting strong gradient more closely, we test the
use of edge padding as well as no padding. We define edge padding as the case of setting the padded
values to be the same as the boundary values, and thereby setting the gradient of the transition
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point for each row to 0. By removing the bias of the strong gradient, our aim is to help balance
the misclassification rate across starting frequencies. We recognise that edge padding may result
in its own type of bias, but our aim is for it to be less significant than zero padding. Table 5.6
shows a breakdown of the change in misclassification rate by class and boundary vs non-boundary.

Edge padding No padding

B NB A B NB A

Type II +2.89 -13.47 -10.58 +6.02 -4.53 +1.49
Type III -1.8 +13.65 +11.85 -1.8 +30.39 +28.59

Background -2.4 +1.3 -1.1 -1.8 +17.62 +15.82

All -1.3 +1.48 +0.17 +2.42 +43.48 +45.9

Table 5.6: Change in misclassification rate for edge padding and no padding relative to zero
padding. Sample set: B=Upper boundary, NB=Non-boundary, A=All.

The removal of padding very slightly re-balances misclassification rate of type II samples, but
ultimately results in the total rate to increase by 1.49 percentage points. When using edge padding,
we see a much stronger effect than re-balancing: for every point increase for boundary samples,
non-boundary samples see a ∼4.7 point decrease, and in total results in the misclassification rate
to go down by 10.58 points. On the other hand, type III samples present the opposite effect,
and consequently cancels out the reduced rate of type II misclassification. However, the use of
density-based filtering means that the detection rates are likely to be low enough to prevent false
positives. Conversely, the high misclassification rate at the upper boundary is likely to cause false
positives, so a reduction may in fact correspond to a net benefit.

The reduced bias from edge padding may be resulting in the classifier to focus more on other
types of discriminatory information, with the end result being a more relaxed decision boundary,
and thus would explain the inverse association between type II and type III misclassification rates.
Figure 5.14 shows that the gradient response by class and classification is almost identical to those
with zero padding in Figure 5.11. One notable difference is the reduction in intensity for false
negatives, which supports the notion that the decision boundary has shifted to encompass a wider
feature set.

Relative to edge padding, the use of no padding consistently results in a 12 – 17 increase in
misclassification rate. Figure 5.10 shows that an increased length is correlated with better accuracy,
so a significant benefit of padding may be a result of the increased length. The absence of change
in misclassification rate for samples at the upper boundary may be a consequence of the additional
length being negligible for vertical structures such as type III bursts and calibration signals.

(a) Type II - TP (b) Type III - TN (c) Background - TN

(d) Type II - FN (e) Type III - FP (f) Background - FP

Figure 5.14: Comparison of average gradient response between correct and incorrect classifications
by class using edge padding. Top) Correct. Bottom) Incorrect.

Hard negative mining
For the negative samples, frequencies with an increased sample rate from hard negative mining
are experiencing high rates of misclassification. Understandably, the introduction of problem cases
requires a shift in the decision boundary that may not be able to separate all of the new examples.
For the most part, the non-boundary frequency ranges have a very low rate of misclassification;
it is unlikely for non–type II burst signal to align with the drift model of type II bursts at these
frequencies. This does however raise the issue of whether the current random sampling — which
still accounts for 80% of all negative samples — is biased towards examples that are too easily
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separable by the classifier. The average type III sample appears to contain little activity (see
Figure 5.7b & Appendix 3 for reference), so a larger range of difficult examples may need to be
sampled to enforce a stronger decision boundary.

Figure 5.15 shows preliminary results of using no padding to produce three more iterations
of hard negatives. In total, we increase the size of the negative set by 18%. We see that the
misclassification rate of type II samples surges to around 80% due to the classifier struggling to
discriminate positive samples from the newly introduced hard negatives. This suggests that we
have a weak discriminator, and that results could be improved by using more descriptive features
or a more advanced classifier. During localisation, our aim is to exploit the integrated physics
knowledge to produce strong detections from an aggregate of many weak detections.
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Figure 5.15: Misclassification rate after introducing more hard negative examples.

5.3 Localisation

5.3.1 Evaluation and parameter tuning criteria

We perform our localisation tests using the optimal preprocessing and feature extraction parameters
from Table 5.3. We use 25-fold cross validation with the same sample grouping used in Section 5.2.1,
where the samples in the test folds dictate which event windows are used for testing. For our sliding
windows, we use a stride of 2 pixels for both the temporal and length axes. For simplicity, we use
zero padding for boundary cases, although we recognise that edge padding is likely to be superior.

To identify true and false positives after producing a segmentation mask, we group the mask
into isolated objects and check for ground truth intersections for each object. We allow any object
— even a single pixel — to count as a true or false positive. In general, we can expect each object
to converge to a central point as we increase the thresholding. However, we cannot assume this
process will be smooth; occasionally, a single detection may split into several disconnected objects.
To avoid counting each object as a unique detection, we use 5 iterations of morphological dilation
on the segmentation mask prior to grouping it into objects. In effect, this results in any objects
within a proximity of 10 pixels to be merged.

Recall that we use a two-stage process during segmentation: we first aim to detect burst
segments using a stronger threshold that restricts the size of detections, and then we use a weaker
threshold to grow the existing detections into higher quality segmentations. Any new ‘detections’
that arise from the lower threshold are discarded from the final segmentation. Thus, even though
we only require a single pixel intersection to detect an event, it is in our best interest to ensure
the initial detections are of high quality. A threshold that’s too restricted may result in many
burst segments to be missed, and a too weak threshold may cause segmentations to spill over the
edge of the burst signal. Furthermore, a weak threshold may result in true positives to merge with
false positives, and hence would inadvertently deflate the false positive rate. For these reasons, a
metric such as F-score would not provide a suitable criteria for optimising the detection parameters.
Recall does not indicate the quality of detections, and the correctness of precision is too unreliable.
We introduce two new metrics that aim to overcome the shortcomings of both recall and precision.

The first metric, ‘proportion’, is a measure that quantifies how much of an event is detected
in relation to its burst segments (isolated objects). For each segment, we calculate its proportion
in area relative to the whole event. The proportions of all detected segments are summed to
give a total score. As with recall, we only require a single intersection within a segment for that
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segment to be considered detected. During the initial detection stage, our only concern is whether
segments are detected, and not the intersection quality within those segments. As long as segments
are detected, then the subsequent segmentation stage will improve its intersection quality. Thus,
the metric can be thought of as representing the maximum potential intersection quality during
segmentation. Note that this means we are not directly focused on optimising the total number of
segments detected; some segments are so small that their detections would be a detriment to the
overall segmentation quality. However, because we evaluate the proportion metric for each event
independently, the variable burst sizes means that we do not bias the metric towards large segments
only. Small segments within smaller bursts will still count towards a large relative proportion, so
a high average score implies good generalisability to variable segment sizes. The metric also serves
as an indirect optimisation of recall; missed events correspond to a proportion rating of 0, and
thereby introduces a large penalty to the average score.

The second metric, ‘relevance’, is a measure of how relevant the resulting segmentation is. It
is similar to the precision metric, but operates pixel-wise instead of detection-wise. However, as
with the proportion metric, we are not concerned about evaluating the intersection quality at this
stage. Therefore, when using Equation 5.1, TP represents the total number of ground-truth pixels
within detected segments, and FP represents the number of pixels outside the ground truth. The
metric’s fundamental purpose is to act as a counterweight to precision; a sudden penalty will be
incurred in the occurrence of a merger between true and false positive detections.

To optimise our detection parameters, we modify the F-score metric by replacing recall with
the proportion and relevance metrics. As in Equation 5.4, we compute the harmonic mean of
precision, relevance, and proportion. In total, we present the following metrics:

• Precision — Measures the likelihood of a detection being correct; see Equation 5.1.

• FP/w — Average number of false positives per three-hour window. Compared to precision,
this metric is not biased to the total number of hours tested, and gives a more practical
measure of performance in a real-world scenario.

• Recall — Measures the likelihood of an event being detected; see Equation 5.2.

• Proportion (all) — Measures the total proportion of detected segments. The mean pro-
portion of all positive events is presented.

• Precision (TP) — As above, but only the true positive events are used to compute the
mean.

• Relevance — Computes the area of all detected segments and divides this by the total
number of pixels. Its intended use is to optimise the detection parameters, but we still
present it as it gives an indication of the segmentation precision. The mean relevance of all
positive events is presented.

• IOU — Measures the general segmentation accuracy. For all event windows, takes the total
number of pixels that intersect with the ground truth and divides that by the total number
of pixels.

DetectionScore =
3

Precision−1 +Relevance−1 + Proportion−1
. (5.4)

We tune three parameters for detection and segmentation: confidence threshold, length trun-
cation, and voting threshold. Confidence refers to the probability estimate from logistic regression,
length truncation is how much length is truncated from the detected ROIs, and voting threshold
is the number of times a pixel has been detected. We evaluate these parameters using grid search:
confidence 0.5 – 1, truncation 0% – 90%, and pixel votes 2 – 7 on a natural log scale. The score in
Equation 5.4 is used as the criteria for choosing the detection parameters, and IOU is used for the
segmentation parameters. We test the performance of segmentation with and without background
removal and detection staging, and tune the parameters for each variation separately. To avoid
testing too many parameter combinations, we evaluate the optimal length truncation for segmen-
tation with no background removal or staging, and then use this value for the other variations.
Table 5.7 shows the optimal parameters found.
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Detection
No BG removal BG removal

No staging Staging No staging Staging

Confidence 0.61 0.96 0.93 0.97 0.98
Voting 6.6 4.7 5 4.2 3.5

Length truncation 50% 40% 40% 40% 40%

Sigma - - - 1 1
Object size - - - 9 9

Table 5.7: Optimal detection and segmentation parameters.

5.3.2 Detection and segmentation

Table 5.8 shows results for detection and all variations of segmentation. When optimising for
segmentation instead of detection, we see a 27.6% increase in IOU. Recall also increases by 5.7%,
but at the cost of a substantial 50.8% increase in the false positive rate (FPR). Through the use
of staging, we are able to sacrifice the relatively small gain in recall in favour of simultaneously
achieving the lower detection-optimised FPR, as well as the higher segmentation-optimised IOU.
IOU does decrease slightly after staging, which indicates that the decrease in ground truth inter-
sections is greater than the decrease in area of false positives. In other words, the size of false
positive objects are not as large as true positive objects.

We also see a decrease in the FPR, which indicates that the weaker threshold sometimes causes
true positives to merge with false positives. However, we remind the reader that the ground truth
has been annotated by a non-expert, and thus the merged ‘false positives’ may actually be burst
signal excluded from the ground truth. An indication of this is that even after discarding any
segments not detected in the first stage, the average detected proportion still increases, signifying
that some newly arisen segment detections are in fact not being discarded. This occurs when two
segments in close proximity merge into a single ‘detection’, and thus allowing both segments to
be preserved even if only one of them was originally detected. Similarly, if two segments become
merged but one of them was not annotated, then they would no longer be incorrectly considered
as a false positive detection. Inevitably, the error of the ground truth is going to be reflected in
the presented metrics, but the resulting trends should remain unbiased due to local errors being
averaged out across all annotations.

We refine the segmentations by discarding any pixels that overlap with the background known
from preprocessing. This helps to target any pixels that have spilled over the edge of burst signal,
and as a result we see a 4.4% increase in IOU and a 7.9% increase in relevance. Aside from the
decreased union, the ability to use a weaker threshold also helps to increase the intersection, since
the risk of over-growing the segmentations is mostly removed. Without the use of staging, the
weaker threshold means we see an increase in recall and proportion, but naturally this comes with
the cost of an increased FPR. These benefits go away when using staging, but the benefits of the
increased IOU and relevance remain with zero penalty to the FPR. Furthermore, we still see a
marginal benefit to proportion due to the increased opportunities for segment mergers.

Detection
No BG removal BG removal

No staging Staging No staging Staging

FP/w 0.124 0.187 0.115 0.211 0.107
Precision 66.0% 57.7% 67.8 55.5% 69.4%

Recall 72.5% 76.6% 72.5% 78.7% 72.5%
Proportion (all) 54.6% 61.3% 56.9% 62.5% 57.7%
Proportion (TP) 75.2% 80.0% 78.4% 79.5% 79.5%

Relevance 85.5% 69.8% 69.8% 77.4% 75.3%
IOU 21.7% 27.7% 27.0% 29.2% 28.2%

Table 5.8: Performance of detection and segmentation.

In Section 4.3.3, because we only utilise a finite amount of lengths, we are forced to create
training samples where the allocated lengths are longer than the length of the burst. We first
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propose potential training samples from our ground truth annotations, and then use a criterion to
either accept or reject the proposals. The criterion determines how much extra length is acceptable,
and thus the resulting range of extra lengths within our training samples also become present within
the detected ROIs. Therefore, the resulting localisations will be poor due to the length being
consistently overestimated. To correct for this, we truncate the length of all detected ROIs prior
to processing them for segmentation. Since all ROIs are considered as an aggregate, a truncation
equal to the average extra length within our samples should correspond to a correctly adjusted
localisation.

To validate this, we test how varying the amount of truncation effects performance. Indeed, we
can see in Figure 5.16 that the optimal amount of truncation for segmentation is 40%, which seems
to be in agreement with the average amount of extra length added to our training samples. In
Figure 5.7a, a notable decrease in gradient magnitude can be seen at around the 60% length mark
of the original unpadded window. When considering detection only, the performance associated
with the amount of truncation occurs roughly at an offset of 10%, where the optimal amount is
50% instead of 40%. Since we only aim for partial-coverage of burst segments during detection, it
makes sense that a higher than average truncation value works well. If we match the truncation
value for detection to be the same as segmentation, then we see a 34% increase in the FPR. After
20% truncation, the rate of performance decline begins to decrease, and becomes negative at 0%
truncation for a performance increase. This is likely due to the influence of the proportion metric,
where more segments are likely to be detected as a result of longer ROI lengths.
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Figure 5.16: Effect of length truncation for detection (detection score; see Equation 5.4) and
segmentation (IOU).

Using the optimal truncation for detection (50%), Figure 5.17a shows the effect of varying both
the confidence and voting thresholds. An elbow curve can be seen wherein the two thresholds are in
equilibrium: performance remains relatively static within the curve but decreases in the outwards
direction. The elbow point of the curve is around 0.9 confidence and e5.8 pixel votes, which is
the point at which a small increase in either axis corresponds to a large decrease in the other.
Increasing the confidence threshold is much more sensitive however; the thickness of the curve
quickly narrows, but conversely remains constant when increasing the number of pixel votes. The
point on the curve with the highest score is at 0.61 confidence and e6.6 pixel votes. Figure 5.17b
confirms that this is not by chance, but that there is indeed a subtle increase in score around this
point.

Figure 5.18 shows the growth rate of false positives relative to recall, proportion, and relevance.
The measure of false positives correspond to the mean count over all 731 three-hour windows (2193
hours in total). The rate of false positives grows much quicker than recall, and hence serves as
a severe bottleneck to detection performance. At the optimal threshold, 91 false positives are
detected, which equates to 0.124 false positives per 3-hour window, or 24.2 hours per false positive.
This is already high, and as a result forces us to settle with a low recall of 72.5%. Recall begins
by increasing rapidly, but fails to keep up with the false positive rate the moment the slope begins
to decline. If we were to aim for a higher recall, such as at the elbow point of the curve and at the
intersection with relevance, then we would achieve 79.1% recall and 0.22 false positives per window
(161 false positives or 13.6 hours per false positive). The result is a 9.1% increase in recall, but at
the cost of a substantial 77.4% increase in the false positive rate.

We can also see that the growth rate of the detected proportion is roughly proportional with

46



(a) (b)

Figure 5.17: Effect of classifier confidence and pixel voting on detection score (Equation 5.4).
Length truncation is fixed to the optimal value (50%). a) Darker shades are better; red cross
marks the optimal threshold pair. b) Same results as 5.17a, but subtle differences in score are
accentuated.

recall, and thus the effect of the false positive bottleneck is exponential: a decrease in the false
positive rate corresponds to a decrease in both the quantity and quality of detections. This is the
inevitable drawback of identifying burst segments independently and without context of the event
as a whole. We do try to gently nudge our detector to be context-aware through the use of physics-
modelling, multi-segment detections, and density-based filtering — but the implicit reinforcement
does not appear to be significant enough to increase the quality of detections.
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Figure 5.18: Correlation between the number of false positives and the number of true positives.
Proportion and relevance metrics are also plotted for reference. The plot shows the effect of varying
the number of pixel votes while keeping the confidence fixed at the optimal threshold. The optimal
threshold for pixel votes is marked with a black vertical line.

Figure 5.19 shows how thresholding affects segmentation IOU when making use of staging and
background removal. A similar elbow curve to the one seen for detection (Figure 5.17) is present,
and its shape remains relatively constant throughout the different variations of segmentation. The
distribution of IOU scores does however have some variation. Higher scores tend to be situated
further towards the top of the curve when using background removal, and consequently this results
in the optimal threshold to shift towards a lower voting threshold. This is an indication that
the voting threshold is the primary parameter when considering the ‘weakness’ of the combined
thresholds. We can also see that when using staging, the breadth of the curve increases, and
this increases even further when combined with background removal. Another notable difference
between no staging and staging is the introduction of a baseline from detection. When using very
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strong thresholds, any previously detected segments remain preserved, and thus the intersection
measure is much higher at these points compared to using no staging.

When adapting the method to a different instrument, we expect the selection of detection
and segmentation parameters to be influenced by the physical properties of type II bursts at
different wavelengths. The difference in physical properties will correspond to a difference in the
selection of ROI parameters, which will in turn correspond to a difference in the resulting pixel
densities. Our aim is to minimise the number of supervised examples needed, so we present the
visualisations of Figures 5.17 & 5.19 as a reference for the expected performance distribution of
the two parameters. The use of a small selection of annotated examples could therefore be used
to loosely replicate similar trends, which can then be compared against the reference to guide the
process of parameter selection.

Figure 5.19: Effect of classifier confidence and pixel voting on segmentation IOU. Length truncation
is fixed to the optimal value (40%). The effect of using staging or background removal is shown.
Cross marks show the optimal threshold pair.

Figure 5.20 shows how varying the background removal parameters affect IOU. Performance
is optimal around 1σ – 1.5σ and decreases outwards, with a higher threshold corresponding to
a faster rate of performance decline. We can see from Figure 5.21a that this is a result of the
relative difference in rate of change between both intersection and union measures. The two are
almost inversely correlated, where the intersection’s rate of change increases with the threshold,
and conversely the union’s rate of change decreases. The optimal threshold is where the difference
between the two slopes, i.e. the ratio between the two measures, is maximum. We see that
increasing the threshold has a larger affect on intersection, where the total relative change surpasses
the union at 3σ. Because more true positive signal is being removed compared to false positive
signal, we consequently see a greater impact on the overall IOU.

A higher threshold is always better when choosing a minimum object size, where the IOU never
decreases as a result of increasing the threshold. Figure 5.21b shows that this is due to the union
being affected much more than the intersection. Each measure continues to decrease, but the
union’s significantly quicker rate means that each step contributes to a higher ratio between the
two measures. The average rate of change for the union is -0.181%, which is 6.3 times as much as
the intersection’s -0.029%. This supports the prior statement of false positive objects being smaller
in size compared to true positive objects.
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Figure 5.20: Effect of background removal parameters on segmentation IOU.
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Figure 5.21: Effect of background removal parameters on intersection and union magnitudes.
Change is shown by the decrease in pixels for each measure. IOU is plotted for comparison.

5.3.3 Solar activity–based classifiers

We have already seen that specialised classifiers perform worse during classification, so at the risk
of overfitting, we decide to optimise localisation parameters separately for each classifier. Our
rationale behind this is to see whether it is possible for specialised classifiers to outperform a
general classifier under the best case scenario. We utilise staging and background removal during
segmentation, so in total we optimise classifier confidence and pixel votes for both detection and
segmentation, as well as the sigma threshold and minimum object size for background removal.
Rather than optimising separate values for length truncation, we use the values found for general
localisation. Table 5.9 shows the parameters used for each specialised classifier.

Low Medium High

Confidence (detection) 0.62 0.89 0.75
Voting (detection) 6.9 5.9 6.1

Confidence (segmentation) 0.92 0.93 0.93
Voting (segmentation) 3.4 4 2.5

Sigma 1 1.5 1
Object size 9 9 9

Table 5.9: Optimal detection and segmentation parameters for solar activity–based classifiers.
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Low Medium High All

G S G S G S G S

TP 35 22 65 57 77 73 177 152
FP 15 5 22 17 41 48 78 70
Precision 70.0% 81.5% 74.7% 77.0% 65.3% 60.3% 69.4% 68.5%

Recall 71.4% 44.9% 73.0% 64.0% 72.6% 68.9% 72.5% 62.3%
FP/w 0.104 0.035 0.083 0.064 0.128 0.150 0.107 0.096

IOU 24.9% 22.9% 31.2% 26.4% 27.2% 25.5% 28.2% 25.4%

Table 5.10: Comparison of localisation performance between general and specialised classifiers on
different activity periods. G=general; S=specialised. Bold results highlight the best performing
classifier for a given activity period.

Table 5.10 shows localisation results on activity subsets using both general and specialised
training. The use of specialised training always results in a lower recall, and in aggregate totals to
a decrease of 14.1%. However, the FPR does also decrease for low and medium activity periods,
corresponding to a total decrease of 10.3%. With the decrease in recall being higher than the
decrease in FPR, as well as segmentation IOU also decreasing by 9.9%, it is clear that the use
of specialised classifiers reduces the overall performance of localisation. Given that no all round
performance increase is observed for any particular activity period, we don’t see any benefit in
compositing general and specialised classifiers.

5.3.4 Failure-case analysis

False negatives by frequency
Figure 5.22 shows how the proportion of ground-truth (GT) that has been detected versus unde-
tected changes with frequency. At the upper frequency boundary, the ratio between TP pixels and
FN pixels is roughly equivalent. Afterwards, the absolute pixel counts of FNs remain relatively
steady, whereas the number of TP pixels see an increase that coincides with the GT. As frequency
progresses downwards, the number of GT pixels begin to decline, with the same trend of the num-
ber of TP pixels following suit. The frequency distribution of the GT is going to be representative
of the patterns learned by the classifier, so it makes sense that the number of GT pixels influence
the number of TP pixels. However, we do not see the same trend at the lower frequencies: the
number of GT pixels begins to climb again after 7 MHz, but this time we see an increase in the
number of FN pixels.
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Figure 5.22: Distribution of ground-truth by frequency and segmentation output. GT=Ground-
truth, TP=True positive, FN=False negative.

When comparing the frequency distribution between GT pixels in Figure 5.22 and the starting
frequency of training samples in Figure 5.12a, there is clearly an imbalance between the two.
There are very few training samples at the lowest frequencies even though the GT contains a large
number of pixels. When selecting training samples, we impose a constraint such that the training
sample must contain a certain proportion of GT signal. Training samples are therefore less likely to
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start at the lower frequencies due to the artificial discontinuation of burst signal as a result of the
frequency boundary. Consequently, this also gives less opportunities for signal at these frequencies
to be detected, since the boundary enforces that signal must be detected at the tail end of an ROI
rather than at the beginning. Given that the number of ROI intersections is a critical component
in our detection methodology, the ability to identify signal at the lower frequencies will suffer as
a result. Boosting the number of pixel votes at the frequency boundary may help to preserve its
signal within the final segmentation.

A secondary issue is that the presence of human error may be amplifying the perceived error of
the detector. For visualisation purposes, we stretch the temporal axis of the data by a factor of ∼2
so that structural patterns are easier to identify. This makes bursts at lower frequencies appear to
be thinner, and as a consequence the relative margin of error becomes larger.

False positives by frequency and object size
After grouping segmentations into true and false positive objects, Figure 5.23 shows the occurrence
rate of frequencies for objects by the class of window they were detected in. Pixels of detections
within type III windows are more likely to be situated at the higher frequencies, which makes sense
given the fact that the curvature of type III bursts are similar to type II bursts at these frequencies.
This same trend can also be seen within background windows, indicating the presence of type III
bursts that were missed by the automatic catalogue. As the curvature between the two types of
bursts begins to deviate significantly, the occurrence rate of false positives within type III windows
drops to 0. Within background windows, we see the opposite effect, where the occurrence rate
increases significantly.
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Figure 5.23: Normalised occurrence rate of frequencies by true and false positive segmented detec-
tions and window class.

Type II windows contain significantly more false positives compared to non–type II windows,
with 55 false positives compared to 10 and 14 for type III and background windows, respectively.
This suggests that many false positives may be a product of unlabelled true positives. However,
Figure 5.23 shows that the occurrence rate of frequencies for false positives within type II windows
does not follow closely to true positives, but instead seems to be a mixture of types. Figure 5.24
plots the distribution of object sizes by type to see if any similarities can be identified. From
the figure alone, it is not immediately clear how the distribution of false positives within type
II windows compare to other instances. On one hand, omissions during annotation are likely
to be biased towards smaller, less noticeable clumps of signal. The distribution could therefore
correspond to the distribution of true positives except with a scaled down range. On the other
hand, the distribution is also quite similar to false positives within background windows; it is
possible that the sufficiently high density of false positive detections are piggybacking off of nearby
type II bursts. To better validate the causes of false positives, we take a look at some examples
visually in Figure 5.25. False positives within type III windows appear to be quite distinct from
other types, where the average object size is skewed towards the tail end of its narrow range.
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Figure 5.24: Distribution of object sizes by true and false positive detections and window class.
Number of objects is shown in label brackets. Boxplots show range, interquartile range, median,
and outliers. II=Type II, III=Type III, BG=Background.

False positive examples
Figure 5.25 shows examples of false positives within type II windows. We see a mixture of causes
including unlabelled type II signal, type III bursts, and type IV bursts. The two most common
reasons for unlabelled type II signal appears to be very weak signal, or signal that has been obscured
by surrounding noise. The disparity between the number of false positives within type II windows
and non–type II windows seemed to indicate that unlabelled signal would account for most of the
false positives. However, the number of genuine false positives also appears to have increased.
Figure 5.23 gives a notable insight to the fact that no false positives occur at the lower frequencies
within type III windows, despite Figures 5.25b & 5.25c showing that the same is not true for type
III bursts within type II windows. Evidently, type III bursts within the two classes of windows
do not share the same characteristics. Indeed, type III bursts that precede type II bursts are a
distinct class known as type III-l bursts [6, 11]. This highlights a flaw with our current approach to
sampling: we only sample negatives within windows that do not contain a type II burst, but doing
so fails to capture the context-dependent features of solar events associated with type II bursts.
Type IV bursts are another example of this issue; their association with type II bursts becomes a
restriction to their inclusion in the negative set. Type IV bursts are often falsely detected multiple
times per event, and its dithering effect may be a potential cause for confusion. The inclusion of
both type IV and type III-l bursts within the training set may be enough for the classifier to stop
responding positively to their patterns, although as previously identified in Section 5.2.5, we may
need to instead focus on using more advanced feature extractors and learning algorithms.

Figures 5.26 & 5.27 show examples of false positive detections within type III and background
windows, respectively. As previously seen visually in Figure 5.25a, and analytically in Figure 5.23,
high frequencies of type III bursts are a common contributor of false positives. We stop seeing
false positives after a certain frequency point due to the drift trajectory of type II bursts becoming
much more curved rather than vertical. Figure 5.27a shows a rare case of a type III false positive
extending down to the mid frequencies. Aside from vertical structures at the higher frequencies,
any structure that happens to align with the drift trajectory of type II bursts at a given frequency
range is also liable to becoming falsely detected. Figures 5.26c & 5.26d show examples whose
structure appears to be very similar to type II bursts, but eventually goes on to violate the drift
model. We can see that as soon as this violation occurs, the response of the detector abruptly
comes to a halt. Our detector is designed to look for periods of conformity to the drift model of
type II bursts, but fails to consider the context of the overall morphology of the structure being
detected. If we were to do so, many false positives including type III & type IV could potentially
be avoided. However, the fact that type II bursts often overlap with other structures would make
the avoidance of false negatives a challenging task.
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(a) (b)

(c) (d)

Figure 5.25: False positive detections within type II windows. GT=Positive signal included in the
ground-truth, UA=Positive signal not included in the ground-truth (unannotated). False positives
are seen to correspond to type III bursts at both the upper and lower frequencies, as well as a type
IV burst. Some ‘false positives’ correspond to unlabelled signal; 5.25c shows missed signal due to
overlapping with noise, and 5.25d shows weak harmonic signal that was missed during annotation.

(a) (b)

(c) (d)

Figure 5.26: False positive detections within type III windows. 5.26a & 5.26b show how the high
frequency portion of type III bursts are susceptible to being wrongly detected due to having a
similar appearance to type II bursts. Similarly, 5.26c & 5.26d show examples of a large portion of
signal that is neither a type II or type III burst, but mimics the drift of type II burst and hence
becomes detected.

53



(a) (b)

(c) (d)

Figure 5.27: False positive detections within background windows. 5.27a shows the presence of type
III bursts in background windows. 5.27b shows another example of non-burst signal that closely
resembles the drift rate of type II bursts. 5.27c shows an extreme case of RFI which exhibits the
abnormal behaviour of extending down to the lowest frequencies. The horizontal structure of RFI
is usually drastically different to the drift of type II bursts with the exception of this unusual case.
Similarly, 5.27d shows a false detection in the case of a large amount of noise situated at the lower
frequencies.

Examples of undetected burst segments

Figure 5.28 shows how the use of staging can result in previously detected burst segments
to become undetected. However, in the last row we can see how staging also helps to remove
some false positive detections below the type II burst. We have shown in Section 5.3.2 that the
trade-off between preserving true positives and discarding false positives is worth it, but it is still
unsatisfying to see true positives being discarded. It is typically the smaller and weaker burst
segments that are susceptible to being discarded, which tells us that these cases generally have a
lower density of ROI detections, but that they are still stimulating a high enough of a response
to be preserved when a weaker threshold is considered. With that said, we also see within each
example cases of weak burst signal that have failed to be detected even without the use of staging.

Given that the detector is confident enough to detect some segments, it would be useful if this
confidence could be used to reinforce the detection of other segments. Undetected regions that
posses a moderate number of pixel votes, and are also seen to align with the drift trajectory of
existing segment detections, are likely to correspond to signal that’s part of the same event. The
same is also true for regions that align with the ∼2:1 harmonic ratio of the drift trajectory. The
pixel votes of these regions could therefore be boosted as a result of complying with the physics
of type II bursts, which would then give them a second chance to meet the threshold. In fact, a
two-way reinforcement could result in the detection of burst segments in the case where not even
a single segment was previously detected.

One approach would be to aggregate the ROI parameters used to detect each object, where the
number of votes for each pixel could be used to compute a weighted average. Each object would
then be associated with a drift trajectory at a certain temporal position. Boosting of the pixel
votes could then be a function of measures relating to the object such as confidence and distance
along the drift trajectory. Going further, this would also allow for individual burst segments to
be grouped into harmonic structures, where harmonics can then be grouped into complete burst
events. The interdependence of these two processes — context-aware reinforcement and grouping
of burst segments — could be done as an iterative procedure where each process helps out the
other. Boosting pixel votes helps to find segments that can be grouped together, and grouped
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Figure 5.28: Comparison of segmentations with and without staging. Left) Staging. Right) No
staging.

burst segments helps to give a more accurate model of the burst’s trajectory.

55



6 Conclusion

6.1 Summary

We have presented a methodology which utilises prior knowledge of physics to complement the
use of classical machine learning and computer vision techniques to detect and segment type II
bursts. We evaluate our approach on DH type II bursts using data from Wind/WAVES, although
we anticipate that our methodological design choices facilitate the application to data from other
instruments. We also evaluate the usefulness of training distinct classifiers for different periods of
solar activity, but found no benefit when using a dataset of our limited size.

Our noise removal focuses on the galactic background noise — an unavoidable source of noise
present in all solar radio observations. We target the single constant property of the noise —
its Gaussian distribution — so that robust estimations of its parameters can be made without
needing to make assumptions about frequency or time dependent factors. We showcase that the
use of background removal helps to improve performance for both detection and segmentation. We
choose not to target sources of noise that are instrument-specific, such as calibration signals or
RFI, but instead rely on the flexibility of machine learning algorithms to automatically discriminate
between noise and burst signal.

Our intensity normalisation procedure is designed to make little to no assumptions about the
distribution of intensity values, including distributions that may be instrument-specific or event-
specific. We utilise the sigmoid function to bring a sensor’s intensity values to a fixed and constant
range, and then use histogram equalisation to spread out the values more evenly for enhanced
contrast. We showcase that our intensity normalisation improves performance significantly, and
that the use of histogram equalisation is able to maximise the benefits of sigmoid remapping
regardless of the chosen parameters.

The appearance of type II bursts is heavily dependent on instrumentation: temporal and
frequency resolution, spacing of frequency channels (normal vs log), and the observed frequency
range are all factors that contribute to burst appearance. Our detection methodology benefits from
being agnostic to instrumental spatial variances by grounding the feature representations of type
II bursts with respect to their structure within time-frequency space. We achieve this through an
adaptive ROI that models the curvature of bursts, followed by a straightening of the ROI using a
two-dimensional coordinate transform. As a result, the appearance of bursts become much more
consistent and hence the task of detection is greatly simplified. Moreover, the use of an adaptive
ROI ensures that any detections are constrained to be in compliance with the structure of bursts,
resulting in the prevention of false positives that correspond to impossible structures.

6.2 Future work

Our current methodology produces semantic segmentations as opposed to instance segmentations
that distinguish between events and harmonic structures. Achieving the latter would be a con-
siderable progression to this work that would enable more effective characterisations of burst pa-
rameters. In turn, this would allow insight to be gained — potentially in real-time — into the
state of the Sun, and hence is a primary goal for future work. We have suggested an avenue that
builds on our current work where physics knowledge is integrated into the post-processing stage
for grouping together burst segments. In conjunction to this process, we also state how the process
of segmentation could be improved through a feedback loop of positive reinforcement based on
observed compliance with the physics of type II bursts.

Our current detector is limited in its search for ROIs due to being restricted to a predetermined
set of drift trajectories. The likelihood of accurately modelling the trajectory of a burst is therefore
significantly decreased, and as a consequence will also correspond to a decreased chance of detec-
tion. To improve the modelling capabilities of the ROIs, it would be beneficial to intertwine the
detection stage with the stages of segmentation and segment grouping. Rather than associating
each temporal position with a set of one-dimensional drift curves, each position could instead be
initialised with a probability distribution of possible drift trajectories. As the detector makes new
hypotheses, the probability distribution could be updated using Bayesian inference such that the
focus narrows down to the true trajectory of the burst. Expanding the methodological scope fur-
ther, works such as Mask-RCNN [19] have used a convolutional neural network to solve the tasks
of ROI proposals, detection, and segmentation jointly by interconnecting each component under a
unified network. Even when evaluating the performance of detection only, performance exceeded
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the existing state-of-the-art due to being able to capture the interdependence between all three
tasks. A similar approach could be considered for type II bursts where all tasks, including the
addition of segment grouping and harmonic classification, could be solved jointly under a unified,
physics-aware neural network. The introduction of strong contextual clues from distant burst sig-
nal could help to facilitate the detection of very weak signals, and would also allow benefits to be
gained from cross-wavelength inference.

The use of a neural network also opens up opportunities to make much better use of the
available data. Currently, we have only annotated 55% of events reported in the catalogue, and
a further 14% of those events have not made it into our training set. Furthermore, even for the
events that have been included, it is likely that a lot of information remains unused due to errors in
both annotation and sampling. The use of semi-supervised learning has proven to be an effective
way of achieving good performance in spite of having few ground-truth examples [21]. This is
extremely useful when the cost of annotation is so high for segmentation tasks, especially in the
case where domain expertise is required. Our detector provides a foundational tool for gathering
cheap labels for segmentation; a weaker threshold can be used to maximise the amount of positive
signal detected, where the manual removal of false positives becomes a much more efficient way to
annotate events.

Self-supervised learning is another powerful technique which is able to utilise supervised learning
algorithms to learn very good features from unlabelled data. A simple linear classifier achieved a
76.5% top-1 accuracy on ImageNet by using a self-supervised feature extractor [8]. Randomised
supervised examples are created by generating data transformations and then learning to predict
what transformation has been applied. This includes a combination of cropping, colour distortions,
and Gaussian blur. Rather than explicitly integrating physics knowledge into the model, this
may be an effective way to learn physics related features implicitly. Simulated data [36] could
potentially allow for an easy way to do this, since it would give us access to ‘fake’ supervised
examples without the need for labelling. Predictive tasks can then be generated very easily, since
there are only two parameters to predict: presence of type II signal and intensity of signal. Being
able to predict these parameters from obscured frequency channels, temporal samples, or time-
frequency blocks would only be possible if a deep understanding of the behaviour of type II bursts
has been learned. If this understanding has indeed been learned, then the task of adapting the
problem to other instruments should be greatly simplified and may not require any supervised
examples depending on the similarities between interplanetary and coronal type II bursts. A
domain adaptation approach [39] may be beneficial for assisting in the transfer of knowledge.
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VC Du Foresto, PT de Zeeuw, C Deen, et al. Detection of orbital motions near the last
stable circular orbit of the massive black hole SgrA. Astronomy & Astrophysics, 618:L10,
2018.

[2] E Aguilar-Rodriguez, N Gopalswamy, R MacDowall, S Yashiro, and ML Kaiser. A study of
the drift rate of type II radio bursts at different wavelengths. In Solar Wind 11/SOHO 16,
Connecting Sun and Heliosphere, volume 592, page 393, 2005.

[3] Space Studies Board, National Research Council, et al. Severe space weather events: un-
derstanding societal and economic impacts: a workshop report. National Academies Press,
2008.

[4] X Bonnin. Type III/II radio burst automatic detection from 10 kHz to 100 MHz., 2016.
Paris Observatory.

[5] J-L Bougeret, ML Kaiser, PJ Kellogg, R Manning, K Goetz, SJ Monson, N Monge, L Friel,
CA Meetre, C Perche, et al. Waves: The radio and plasma wave investigation on the wind
spacecraft. Space Science Reviews, 71(1-4):231–263, 1995.

[6] HV Cane, WC Erickson, and NP Prestage. Solar flares, type III radio bursts, coronal mass ejec-
tions, and energetic particles. Journal of Geophysical Research: Space Physics, 107(A10):SSH–
14, 2002.

[7] HV Cane and DV Reames. Some statistics of solar radio bursts of spectral types II and IV.
The Astrophysical Journal, 325:901–904, 1988.

[8] T Chen, S Kornblith, M Norouzi, and G Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[9] HS Dadi and GKM Pillutla. Improved face recognition rate using hog features and svm
classifier. IOSR Journal of Electronics and Communication Engineering, 11(04):34–44, 2016.

[10] N Dalal and B Triggs. Histograms of oriented gradients for human detection. In Computer
Vision and Pattern Recognition (CVPR), volume 1, pages 886–893. IEEE, 2005.

[11] RT Duffin, SM White, PS Ray, and ML Kaiser. Type III-l solar radio bursts and solar energetic
particle events. In Journal of Physics: Conference Series, volume 642. IOP Publishing, 2015.

[12] GA Dulk, WC Erickson, R Manning, and J-L Bougeret. Calibration of low-frequency radio
telescopes using the galactic background radiation. Astronomy & Astrophysics, 365(2):294–
300, 2001.

[13] R-E Fan, K-W Chang, C-J Hsieh, X-R Wang, and C-J Lin. Liblinear: A library for large
linear classification. Journal of Machine Learning Research, 9(Aug):1871–1874, 2008.

[14] LN Garcia. Galactic Background Radiation. https://radiojove.gsfc.nasa.gov/library/
sci_briefs/galactic.html. NASA. Accessed 2020-05-29.

[15] RC Gonzalez and RE Woods. Digital Imaging Processing. Massachusetts: Addison-Wesley,
1992.

[16] N Gopalswamy. Coronal mass ejections and type II radio bursts. Geophysical monograph-
american geophysical union, 165:207, 2006.

[17] N Gopalswamy. Low-frequency radio bursts and space weather. In URSI Asia-Pacific Radio
Science Conference, pages 471–474. IEEE, 2016.
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Appendices

Appendix 1: List of events and detections

1997/04/01 14:00 1
1997/04/07 14:30 0
1997/05/12 05:15 1
1997/09/23 21:53 1
1997/11/03 05:15 1
1997/11/03 10:30 1
1997/11/04 06:00 1
1997/11/06 12:20 1
1997/11/27 13:30 0
1997/12/12 22:45 0
1998/03/29 03:05 1
1998/04/23 06:00 1
1998/04/27 09:20 1
1998/05/02 14:15 0
1998/05/02 17:00 0
1998/05/06 08:25 0
1998/05/09 03:35 0
1998/05/11 21:40 1
1998/05/19 10:00 1
1998/06/16 18:20 1
1998/11/02 14:00 1
1998/11/06 03:00 1
1998/11/07 00:20 1
1998/11/08 11:20 1
1998/12/18 17:50 1
1999/04/24 13:50 1
1999/05/03 05:50 1
1999/06/04 07:05 1
1999/06/11 11:45 1
1999/06/23 05:50 1
1999/06/29 19:20 0
1999/09/03 03:00 0
1999/10/14 09:10 0
1999/10/17 23:27 1
1999/11/16 05:17 1
2000/02/12 03:55 1
2000/02/17 20:42 1
2000/03/02 13:50 1
2000/04/04 15:45 0
2000/04/18 15:00 1
2000/05/05 16:35 1
2000/05/07 21:15 0
2000/05/12 23:34 1
2000/05/15 16:47 1
2000/06/02 22:00 0
2000/06/06 15:20 1
2000/06/06 18:45 1
2000/06/10 17:15 1
2000/06/15 19:52 1
2000/07/22 11:45 1
2000/08/11 11:35 0
2000/09/12 12:00 1
2000/09/19 08:45 1
2000/10/05 22:10 1
2000/10/25 09:30 0
2000/11/03 18:35 0
2000/11/08 23:20 1
2000/11/09 01:15 1
2000/11/09 16:15 1
2000/11/23 08:16 1
2000/11/24 15:25 0

2000/11/26 08:10 1
2001/01/20 19:12 0
2001/01/20 21:30 1
2001/01/26 12:06 1
2001/02/11 01:40 1
2001/03/10 04:18 1
2001/04/02 11:30 1
2001/04/02 22:05 1
2001/04/03 03:40 1
2001/04/06 19:35 1
2001/04/06 21:50 1
2001/04/09 15:53 1
2001/04/11 13:15 1
2001/04/26 12:40 1
2001/05/12 23:52 1
2001/05/30 00:25 1
2001/08/16 00:10 1
2001/08/30 20:43 1
2001/09/03 18:48 0
2001/09/15 11:50 1
2001/09/17 08:35 1
2001/09/20 18:43 1
2001/09/24 10:45 1
2001/09/27 10:05 1
2001/10/09 11:20 1
2001/10/09 13:10 0
2001/10/19 16:45 1
2001/10/25 15:30 0
2001/11/04 19:30 1
2001/12/26 05:20 1
2001/12/28 20:35 1
2002/01/14 06:25 0
2002/01/27 12:49 1
2002/02/01 19:23 0
2002/03/11 00:00 1
2002/03/17 06:00 1
2002/03/22 11:30 1
2002/04/14 07:50 1
2002/05/02 23:50 1
2002/07/26 22:27 1
2002/08/03 19:20 1
2002/08/16 06:15 1
2002/09/05 16:55 1
2002/09/10 15:19 1
2002/10/27 23:06 1
2002/11/11 16:15 1
2002/12/22 04:20 1
2003/01/20 19:10 0
2003/01/27 22:20 1
2003/03/19 02:30 1
2003/06/16 00:00 1
2003/06/17 22:50 0
2003/10/26 07:00 1
2003/11/01 22:55 1
2003/11/02 09:15 1
2003/11/05 01:00 1
2003/11/13 09:35 1
2004/01/07 04:15 1
2004/01/07 10:35 1
2004/04/08 13:30 1
2004/06/02 23:13 1

2004/06/03 16:48 1
2004/06/04 07:50 1
2004/06/22 22:07 1
2004/07/23 19:00 1
2004/08/08 09:15 0
2004/10/24 03:12 1
2004/11/07 16:25 1
2004/11/09 17:35 1
2004/12/08 20:05 1
2004/12/29 16:35 1
2004/12/30 23:45 1
2005/01/04 11:20 0
2005/01/15 06:15 1
2005/01/20 07:15 0
2005/05/02 22:40 0
2005/05/03 00:20 0
2005/06/03 12:50 1
2005/06/16 20:25 0
2005/07/09 22:15 0
2005/08/01 14:15 0
2005/08/22 01:30 1
2005/08/23 15:00 0
2005/08/29 11:10 0
2005/08/31 11:40 0
2005/09/03 03:20 1
2006/08/16 15:45 1
2006/08/26 20:40 0
2006/11/06 10:35 1
2006/12/06 19:00 0
2007/01/25 06:55 1
2007/12/31 01:05 1
2008/03/25 19:05 0
2010/08/01 09:20 0
2010/08/18 06:05 1
2011/01/13 09:15 1
2011/01/27 12:20 1
2011/02/13 17:50 1
2011/02/15 02:10 0
2011/03/07 14:30 1
2011/05/29 21:10 0
2011/06/02 08:00 1
2011/06/02 12:00 1
2011/06/04 07:00 0
2011/08/02 06:15 1
2011/08/04 04:15 1
2011/08/09 08:20 0
2011/09/22 11:05 1
2011/09/25 05:30 1
2011/10/21 13:15 0
2011/11/09 13:30 1
2011/12/25 18:45 1
2012/01/02 15:00 0
2012/01/19 15:00 1
2012/01/27 18:30 1
2012/03/09 04:10 0
2012/03/26 23:15 0
2012/03/27 21:45 1
2012/04/09 12:20 1
2012/04/15 02:30 1
2012/07/04 17:00 1
2012/07/17 14:40 1

2012/07/19 05:30 1
2012/07/23 02:30 1
2013/03/15 07:00 0
2013/04/18 18:00 1
2013/04/21 20:25 1
2013/05/13 02:20 1
2013/05/13 16:15 1
2013/06/21 03:35 1
2013/06/28 01:53 1
2013/07/04 20:57 1
2013/08/06 02:01 0
2013/08/30 02:34 1
2013/10/02 20:46 1
2013/10/22 21:33 0
2013/10/26 03:01 1
2013/10/26 09:34 1
2013/10/27 18:12 1
2013/10/28 15:24 0
2013/11/07 10:26 1
2013/12/05 12:45 0
2013/12/05 20:48 1
2013/12/07 07:43 0
2013/12/12 03:55 1
2014/01/06 07:57 1
2014/01/20 22:24 1
2014/02/18 02:16 1
2014/03/05 13:33 0
2014/03/29 00:12 0
2014/03/29 17:59 0
2014/04/02 13:42 1
2014/04/04 14:02 1
2014/04/18 13:05 0
2014/06/10 12:58 1
2014/06/12 22:14 0
2014/07/30 07:44 1
2014/08/25 15:20 1
2014/08/25 20:43 0
2014/09/01 11:12 0
2014/09/10 17:45 0
2014/09/20 05:10 0
2014/09/23 23:41 1
2014/09/24 20:54 0
2014/10/02 21:34 1
2014/10/21 12:33 1
2014/11/08 16:57 1
2014/12/17 05:00 1
2015/03/06 08:00 1
2015/04/26 03:21 1
2015/06/18 17:42 1
2015/06/21 02:33 0
2015/06/22 18:20 1
2015/08/22 07:07 1
2015/09/18 04:54 0
2015/11/04 14:07 1
2015/11/09 13:21 1
2015/12/23 01:18 1
2015/12/28 11:50 1
2016/02/05 22:35 1
2016/05/04 14:20 0
2016/05/24 17:00 1
2016/08/15 18:21 1

Table 1: List of events. YYYY/MM/DD HH:MM. Detected=1 | Undetected=0.
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Appendix 2: Additional intensity normalisation results
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Figure 1: Linear normalisation.
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Figure 2: Sigmoid normalisation.
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Figure 3: Sigmoid+HE normalisation with temporal scaling.
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Appendix 3: Average training sample by parameter and class

Figure 4: Drift parameter. Columns: Type II, Type III, Background. Rows: Drift 1, Drift 2,
Drift 3, Drift 4. See Table 4.1 for scaling factor and power index values, and Figure 4.12 for their
appearence in image space.

Figure 5: Length parameter. Columns: Type II, Type III, Background. Rows: 42, 74, 132, 164.

Figure 6: Thickness parameter. Columns: Type II, Type III, Background. Rows: 12, 18, 24.
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