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1.1 Cetaceans and acoustics

Despite a first appearance on land, some mammalian species are now commonly

found in planet Earth’s oceans, forming the marine mammals group. Families

evolving from 3 distinct orders have physiologically evolved to thrive in the marine

environment: Pinnipeds (Carnivora, e.g. seals and walruses), Sirenians (Afrotheria,
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2 1.1. Cetaceans and acoustics

e.g. manatees), and Cetaceans (Cetartiodactyla, e.g. whales and dolphins). The

following thesis will focus on the latter. Cetaceans are classified into two suborders:

Odontocetes (toothed cetaceans, such as dolphins, orcas or sperm whales) and

Mysticetes (baleen cetaceans, such as blue whales or humpback whales, see Fig. 1.1).

Figure 1.1: (left) Evolution of the marine mammals. (right) Cetacean evolutionary
relationships (top: Odontocetes, bottom: Mysticetes). Both figures are taken from
Whitehead and Rendell [205].

Returning to the sea some 50 million years ago [205], cetaceans now show

a complete adaptation to their marine environment, with their powerful flukes,

streamlined body, and nostrils displaced on top of their head (allowing for efficient

breathing while swimming). Another important adaptation, especially relevant

to this study, is the development of their acoustic capabilities, both as emitters

and as receivers. Indeed, light typically fades out after a few dozen meters in

water, which makes of vision a quite limited sense. In contrast, the higher density

of water (compared to air) makes sound travel faster and further. Cetaceans

make use of this property to communicate and/or echolocate up to great distances.
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Blue whale calls can be heard 200km away [176], and sperm whales are able to

detect a 1m object at 470m [55].

1.1.1 Echolocation

One of the uses cetaceans make of underwater acoustics is echolocation. Alike an

active sonar, emitting a sound and measuring how it bounces back to you (its echo)

allows to sense distance from surrounding objects, their shape [140], or even their

texture [78] (Fig. 1.2). Bats use echolocation to navigate and hunt in dark caves,

odontocetes use echolocation in a similar way underwater.

Short impulse like sounds commonly named ‘clicks’ (transitory waves) are mostly

associated with echolocation purposes [7]. However, there is not one single type of

click used for echolocation: it might coincide with habitats and feeding behaviours

[100]. Using short duration clicks, more can be sent in a small period of time

without them mixing up, thus increasing the potential temporal resolution of

the echolocation. This is typically suited for hunting at high speeds, like small

odontocetes do. On the other hand, clicks at lower frequencies will travel further,

and thus would be more suited for hunting from long distances like sperm whales

do (extremely high Kogia clicks go against this hypothesis).

Finally, despite the old consensus that only odontocetes echolocate with their

high frequency clicks, new studies suggest that mysticetes might also make use

of their low frequency signals as sonars [126].

1.1.2 Communication

The second major use of sound by cetaceans is communication, a broad concept that

can be divided into two main categories: song and social communication systems [92].

Song

The term song has been first used for cetacean signals by Payne and McVay [148],

listening to humpback whales whose vocalisations met the following definition:

"a series of notes, generally of more than one type, uttered in succession and
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P.O. Box 1391, San Pedro, CA  90733
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All toothed whales (Odontocetes) have a unique way 
of finding prey and navigating in their often dark 
and murky water world. Like bats, toothed whales 
(such as orcas, sperm whales, dolphins, porpoises) 
use echolocation, or SONAR (SOund Navigation   
And Ranging). They send out clicking sounds, and 
then they receive back echoes when these sounds 
bounce off objects. The echoes help deliver an 
“acoustic message” to the animal’s brain about these 
objects.

Illustrations © Uko Gorter

How does echolocation work?
•	 PHONIC LIPS - Sounds are produced by two sets of 

“Phonic Lips” in a complex system of air sacs and nasal 
passages that the animal has below its blowhole. Each 
set of phonic lips works independently or simultaneously 
to produce sounds.

•	 BEAM OF SOUND - The animal projects these sounds 
through a fatty tissue in its forehead called the “Melon.” 
The melon focuses this beam of sound on an object (such 
as a fish or an obstacle).

•	 ECHOES BOUNCE BACK - The sound waves bounce 
off the object and are received back as echoes by the 
animal through its lower jaw (mandible). 

•	 FROM JAW TO INNER EAR - Inside the lower jaw 
an area of fatty tissue called the “acoustic or mandibular 
window” is directly connected to the animal’s inner ear 
(bulla).

•	 ACOUSTIC MESSAGE The echo passes through the 
inner ear to form an acoustic message in the animal’s 
brain. 

ACS  Echolocation

Figure 1.2: Illustration of the dolphin echolocation mechanism for hunting purposes
(image credit: Uko Gorter - American Cetacean Society).

so related as to form a recognisable sequence or pattern in time”. Similarly to

bird songs, they have shown a role in reproductive behaviours: mostly males are

observed singing, during the reproductive season, potentially to attract females,

fend off other males, or a combination of both [39, 179]. Songs usually come in

strictly patterned sequences, shared by whole species or communities [205]. Among

cetaceans, they have yet been observed only in mysticetes, with the most renowned

one probably being the humpback whale song.

Social communication

On the other hand, communication is also observed in odontocetes social groups.

Alike in songs, these signals are patterned vocalisations, some of which being

identified in discrete categories [65, 203]. However, they are not restricted to

reproductive contexts, and appear in relatively less deterministic sequences. The

term song therefore seems less appropriate for this phenomenon, which is rather

associated with social bonding functions [170, 66].

In most cases, these vocal signals occur with tonal, whistled or pulsed calls.

Their associated categories (‘call type’) are commonly defined by characteristics

on their time / frequency contour. As an exception, sperm whales produce clicks
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in stereotyped rhythmic sequences (named codas) that were also attributed to

communication purposes [203]. It is however not excluded that other odontocetes

use clicks as means of communication, but no similar stereotyped sequences have

yet been observed among them.

1.1.3 Culture

The term culture is often encountered when describing cetacean communication

systems [59, 69, 158]. It seems appropriate to describe the vocal divergences observed

between cetacean communities. In a broad sense, culture is defined as ‘behaviour or

information shared within a community, that is acquired from conspecifics through

some form of social learning’ [205]. In cetaceans, it takes form as specialisation

in diets or hunting techniques (e.g. with orcas) or as specific vocal patterns. For

instance, sperm whale codas [158] (Fig. 1.3), orca stereotyped calls [41], humpback

whale songs [70] (Fig. 1.6) or fin whale pulse sequences [29], are all community

specific, some evolving through the years, and thus are described as cultural

phenomenons. This is only possible thanks to the vocal production learning capacity

that cetaceans demonstrate [92], a relatively rare characteristic among mammals.

1.1.4 Human activity impacts

In the twentieth century, close to 3 million large whales were caught by whalers

[163]. Seeing some whale species coming close to extinction has motivated a large

majority of the international community to cease commercial whaling in the late 20th

century. However, cetaceans are still heavily impacted by human marine activities

in numerous ways (Fig. 1.4). We will focus here on the ones related to acoustics.

There exist a wide variety of anthropogenic acoustic disturbances in the marine

environment, which has triggered the development of a new fields of research

focusing solely on ambient noise levels [127]. Marine traffic, seismic surveys using

airguns (often to search for oil patches), pile driving (for marine constructions

such as offshore wind turbines), military sonars and explosive tests are the most

widespread, with several consequences on cetaceans.
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Figure 1.3: (left) Location of two sperm whale communities. (right) Differences in
codas patterns (dialects) between the two communities (K: Kumano coast, O: Ogasawara
Islands) . Figures are taken from Amano et al. [5]

We hear better in a silent environment. This implies the first consequence of

acoustic disturbances: acoustic masking. With increasing ambient noise levels, the

hearing capacities of cetaceans decrease, thus hindering their ability to communicate,

hunt, and navigate [48]. More generally, dense marine traffic has also been shown

to cause stress to some cetaceans species [165].

The second main consequence is acoustic impairment: temporary or permanent

injuries of the hearing apparatus. Powerful sounds such as those emitted by airguns

or military tests have been shown to cause deafness in some cetaceans, sometimes

leading to mass strandings [47].

Eventually, arising from a dense marine traffic, presumably combined with

disorientation due to acoustic masking, the collision problem has also attracted

the attention of the cetacean conservation community. Especially affecting large

mysticetes (e.g. fin whales or right whales), records of death from collisions with

boats show a significant impact on whale populations [164], motivating measures

to mitigate collision risks.
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An interdisciplinary approach to the management of whale-ship collisions 
 

 34 

 

Figure 6. Evolution of the worldwide sperm (top) and fin (bottom) whale populations and the main human-induced 
direct mortality threats. The threats are expressed in relative value based on the following indicators: the number of 
catch worldwide for the “whaling” threat; the tonnes of capture worldwide for the “fishing industry” threat; and the 
tonnes of cargo transported for the “shipping industry”. Theoretical abundances were calculated using a population 
dynamic model with pre-disturbance parameters (Chapter 4). Data source: FAO, 2016; IUCN, 2018; Schneider and 
Pearce, 2004; Stopford, 2009; Whitehead, 2002. Conception: Sèbe. 
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Figure 1.4: Evolution of the worldwide sperm (top) and fin (bottom) whale populations
and the main human-induced direct mortality threats. The threats are expressed in
relative value. This figure is taken from Sèbe [172].

1.2 Passive Acoustic Monitoring of cetaceans

To reveal the aforementioned complexity and diversity of cetacean’s uses of acoustics,

scientists also have put forward their hearing sense. Passive Acoustic Monitoring

(PAM) is a field of bioacoustic studies that combines several scientific and technical

domains, from electronics for recording hardware, to signal processing and statistical

analysis. The term passive refers to the notion of listening from a distance, without

interfering with the animals, as opposed to active sonar systems or attaching

acoustic tags to the animals. The analysis of the cetaceans acoustic activity

is providing important insights on their behaviour, population dynamics, social

structures or even physiology.
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1.2.1 Comparison of acoustic and visual surveys

Besides PAM, visual surveys is the second main approach to the biological study

of cetaceans. Each comes with its pros and cons. The acoustic approach enables

long term surveys at relatively low costs: placing a fixed antenna allows to monitor

biological activities for several consecutive months, requiring human intervention

only for the installation and extraction of the recording system. In contrast, the

visual approach demands a continuous human implication throughout the survey,

in the relatively inaccessible marine environment.

In terms of detection capacities, cetaceans can be heard from great distances

(up to 200km for the blue whale [176]), even during deep dives, while they can

be visually detected from relatively short distances (around 1km, depending on

weather conditions) only when surfacing (less than a third of the time for sperm

whales [202]). However, species had first to be classified visually before we could

learn on their associated acoustic behaviour, and photo identification is still to

this day the only reliable way to recognise individuals. Moreover, the observation

of group sizes, behaviour, and body conditions still mostly relies on vision. The

two approaches thus really are complementary.

1.2.2 Antenna types

PAM starts by placing hydrophone(s) (underwater microphones) to listen or record

the acoustic environment. They can be fixed on the sea floor (bottom mounted),

to a buoy (sonobuoy), to a cable towed by a boat (towed array), or directly to the

hull of a boat or Autonomous Surface Vehicule (ASV) (Fig. 1.5). When recording

with multiple synchronised hydrophones, one can also triangulate (infer the position

of) sound sources, by measuring their Time Difference Of Arrivals (TDOAs) for

instance. The types of recording devices, their placement in the water column, and

their layout between each other have crucial impacts on the yielded recordings,

facilitating or not the following signal processing analysis.

For that matter, when implementing acoustic recording systems, one has to

make compromises. Indeed, the functioning time of a recorder is limited by its
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Figure 1.5: Example of a multi-hydrophone antenna mounted on an ASV, taken from
Poupard et al. [153].

available resources (battery power and data storage). On the other hand, settings

that allow for a more detailed view of the acoustic scene (increased number of

channels, sampling frequency and/or the byte depth) also imply a higher rate

of consumption of these resources.

1.2.3 PAM for biological studies

The first step of the analysis of acoustic signals typically comes down to the

detection and classification of cetacean vocalisations. The amount of detection

through time in long term surveys already provides significant information on the

animals’ lives. From these, one can infer population density [192] and seasonal or

dial presence patterns [155]. When combining several antennas, these statistics

can also be spacialised.

The analysis of the detected signals can then bring further knowledge on the

recorded animals, such as community membership, current behaviour (hunting,

socialising, courting), and individual characteristics (sexual maturity, body size

for sperm whales [155]). These measures can themselves be put in a space-time

perspective, potentially revealing patterns. In this way, PAM becomes useful to

cetacean behavioural biology and stock structure assessment.
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Figure 1.6: Example of passive acoustic monitoring findings: long term cultural
transmission of humpback whale songs eastward through the Southern Pacific Ocean
(each colour represents identified song types). Taken from Garland et al. [70].

A second field PAM provides to is the study of animal communication systems.

Cetaceans indeed represent a significant part among the vocal learning species

(along with birds, bats, seals, elephants, mice and primates). Identifying patterned

sequences and associating them with species, communities and/or behaviours yields

exemplary data on the development of vocal interaction in the animal kingdom [64].

Moreover, acoustic behaviour studies revealing cultural differences has provided

knowledge on population dynamics [139] (Fig. 1.6) and social structures [72]. There

is therefore a great diversity of biological wonders that PAM contributes to unveil.

1.2.4 Cetacean conservation

Some may question the amount of effort put into cetacean biology studies, consider-

ing that knowledge of nature is not in itself a sufficient driver. In that regard, it

is to be kept in mind that cetaceans occupy the top of the ocean’s food web, and

therefore are significant regulators of their ecosystem as a whole. Moreover, the

oceanic ecosystem is not only an important provider of food to humans, but also
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Figure 1.7: Example of conservation measure in the Gulf of St. Lawrence in Canada
[28]. Reduced speed zones are put in place all year round (red) and seasonally (green) to
protect North Atlantic Right Whales.

crucial to breathe (it is responsible for around 70% of the atmosphere’s oxygen

production [79]). This field of study thus matters not only for the knowledge of

planet earth’s animal kingdom, but simply to our long term survival.

As stated previously, human activities heavily impact cetacean species, putting

some of them close to extinction [104]. Therefore, it seems relevant that we learn how

to mitigate this impact and work on cetacean conservation policies. Some regulation

measures have already been put in place, e.g. the Marine Mammal Protection

Act [62], speed regulations [61] (Fig. 1.7), and the definition of marine mammal

sanctuaries [136, 189]. Monitoring the efficiency and/or need for regulations, as

well as maximising their relevance (e.g. habitats and/or seasons of importance) can

only be done via the knowledge of the animals, thus justifying their study.

1.3 Neural Networks and PAM

1.3.1 Automated PAM before Neural Networks

To carry out the aforementioned long term cetacean surveys, acoustic detections are

needed. This process can be done by manually inspecting signals, especially their
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time / frequency representation (spectrograms). However, this is very costly in

human efforts, which motivated the development of automatic detection mechanisms.

With such systems in hand, researchers can seamlessly process months of data to

yield results such as spatio-temporal presence statistics.

The development of detection systems has long been done with handcrafted

algorithms [73]. They can be sufficient for some use cases, but often come quite

limited, as the variety of sounds to detect and potential noises increase. Analysing

long streams of data across recording devices and antenna locations demands highly

robust detection systems, for which handcrafted algorithms remain unsatisfactory.

As an analogy, let us consider our ability to recognise our kin by the sound

of their voice. Formally describing how to differentiate talking individuals seems

nearly impossible, especially in a computer language. However, we know that given

a hearing sense and sufficient cognitive capacities, by listening to a voice several

times, we acquire the capacity to recognise it. This led the scientific community

to start shifting towards machine learning algorithms, which are introduced in

the following section.

1.3.2 Artificial neural networks

Training Artificial Neural Networks (ANNs) is the chosen approach for the automa-

tion of PAM throughout this thesis. It is one of the most popular techniques of

machine learning, a field of computer sciences that approaches problem solving

without programming solutions explicitly. Specifically, in machine learning, the

algorithm is designed to approximate (or learn) the optimum solution to a problem,

often formulated as a mathematical framework. An analogy could be made that

genes encode a brain structure for it to learn but genes do not encode knowledge

directly. Similarly, in machine learning, a learning framework is programmed, but

the task’s solution is to be learnt.

ANNs represent a major branch of today’s machine learning, solving tasks in

computer vision and speech recognition with performances and robustness highly

superior to that of traditional handcrafted algorithms. This has motivated this
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research to apply ANNs to the field of PAM, making it the central topic of this

thesis as described in the following section.

1.4 Thesis objectives

This thesis was co-financed by the GIAS European project, aiming to improve

navigation security in the Mediterranean sea (western bassin). This thesis takes

part in one axis of this project: the mitigation of whale-ship collision risk. For that

purpose, a ‘smart bioacoustic buoy’ was designed, with the intent to acoustically

detect the large cetaceans in a target zone (sperm whales and fin whales). Alerts

could thus be transmitted close to real-time, for ships to adapt their speed or

route accordingly.

Being a thesis in computer science, the goal is to design and implement the

acoustic detection algorithms embedded in the buoy (collaborating with third parties

on the hardware development). Moreover, motivated by the recent advances in

deep learning, the ANN approach was chosen.

The work of training ANNs for the detection of cetacean vocalisations quickly

expanded well beyond the initial needs of the GIAS project. Indeed, the team

participates in a variety of projects, described in section 3.2.1. In each of them,

the role of the team is typically to analyse large amounts of recordings to advance

on biological questions. Hence the need for cetacean acoustic detection and/or

classification mechanisms. Moreover, the performance demonstrated by ANNs in

early experiments motivated to use them extensively on other species. This is how

the objective of this work dissociated from the GIAS implementation to become a

general study of applying ANNs to cetacean acoustic detection and classification.

1.4.1 Structure of the manuscript

This document is organised as follows. First, chapter 2 introduces the State Of

The Art (SOTA) of the deep learning techniques that will be used in this study,

along with their use for automated PAM. Then, chapter 3 will go through the

species of interest for this work, the signals they emit, and the recordings available.
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Figure 1.8: Flowchart of the typical process when using ANNs for bioacoustics. The
main steps covered by this thesis are shown by arrows with their associated chapters.

The rest of the manuscript then revolves around the three main steps needed to

address PAM with ANNs (Fig. 1.8). It starts with the construction of training

databases, describing annotation procedures suited for a variety of constraints

(depending on the recordings at hand and the target signals). Then, to train

ANNs on these databases, architectures and frameworks are described to yield

robust detection and classification mechanisms (again depending on constraints

of computational power and target signals). Finally, for some of the trained

models, applications are illustrated around two main uses: species conservation

and communication modelling.
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The following chapter introduces the main technical aspects relevant to the

subsequent work, lying between pedagogic and bibliographic objectives. It starts

with the main techniques involved in building and training ANNs, in their most

prevalent context in the literature (computer vision). Then, PAM of cetaceans (in

general and using ANNs) are reviewed. Finally, the last section of this chapter

intends to put past work into perspective with this thesis.

15
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2.1 Neural networks for computer vision

If computer vision techniques can be used to tackle acoustic tasks, it is in part

because sound can be represented as time-frequency images (spectrograms for

instance). They describe content such that vocalisations appear as patterns with

identifiable shapes for instance1. We will therefore first go through the state of the

art in image pattern recognition before applying similar methods to our acoustic

tasks. This is obviously not an exhaustive review of deep neural networks, but

rather an overview of the key elements used in this thesis to build detection

and classification systems.

2.1.1 Introduction to Artificial Neural Networks

The idea of emulating brain neural systems computationally emerged in the mid 20th

century [63]. It is however only recently that ANNs have taken such an important

part in applied mathematics and computer sciences, with the increased availability

of data and computational power. The underlying approach to ANNs is to reproduce

advanced processes emerging from the accumulation of simple operations, alike

brains with neurons. Put mathematically, neurons would typically take the form

of a simple linear transformation of an input x into an output y (y = wx + b).

With their combination into large networks emerges the capacity of modelling high

level functions such as classifying cat and dog images.

An ANN is defined by a network architecture (interconnection of neurons) and

its neurons’ weights (the linear transformations’ coefficients, namely w and b). Like

so, we can formulate the model g as a composition of linear layers lθi
, and the

concatenation of all their weights (Eq. 2.1).

gθ(x) = lθ1 ◦ lθ2 ◦ lθ3 ◦ ...lθn(x) (2.1)

We first design an architecture g before optimising its weights θ for our task,

typically with supervised learning. This paradigm consists in feeding the model
1In a way, our hearing system itself processes sound via a frequency decomposition with the

cochlea
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examples with their associated labels. For instance with our cats and dogs task,

this means giving the model images of each class and asking it to predict the

associated label, namely ‘cat’ or ‘dog’. An error L is then computed between the

expected and the predicted labels. Like so, the training objective can be formulated

as Eq. 2.2 to find the optimum weights θ̂.

θ̂ = argmin
θ

L(y, gθ(x)) (2.2)

Under the hood, the network learns a projection of the input images (often

called embedding) from the pixel space to a new abstract one. Put simply, the more

neurons in a network, the more complex the resulting projection can be2. Training

thus becomes trying to learn the optimum embedding space to solve a given task.

There are two main limitations here, the first being the necessary computational

power. Training a large ANN typically demands thousands of iterations, each of

which consists in an update of millions of neurons. This is in part why we had to wait

for the development of parallel computation with Graphical Processing Units (GPUs)

to see the democratisation of ANNs. The second limitation, this time a human

effort cost, is the necessary training data. To learn a robust solution, training

typically demands thousands of examples for each class, with their associated

label (often manually annotated) for the computation of the performance metric

that will be optimised.

This leads us to the major challenge of training ANNs and modelling in general:

robustness, or generalisation. Indeed, optimising a performance metric on a limited

amount of examples might bring the curse of overfitting: when the model finds a

solution that works for its given training data, but not the generalised solution that

we desire (see Fig. 2.1). To give an example, coming back to the cats and dogs

task, if all the cats we show the ANN are white and all dogs are black, it might just

discriminate based on average pixel colours. This will lead to great performances

on the training data, but will fail as soon as we try our ANN on a black cat image.
2Neurons are put in a stack of layers, thus the appellation ‘deep learning’
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 Underfitting

 Overfitting

 Good fit

Figure 2.1: Illustration of the concepts of underfitting and overfitting, for the cats and
dogs classification task. Lines denote discrimination boundaries, in a two-dimensional
abstract embedding space.

As we will see throughout this thesis, most of the struggle in training ANNs comes

down to enforcing generic solutions with limited training data.

2.1.2 Performance optimisation

As previously mentioned, training ANN comes down to trying to find the optimum

weights for a task. This optimisation takes form as the minimisation of some error

function, or loss (Eq. 2.2). This section describes the methods involved in optimising

this loss, especially with Stochastic Gradient Descent (SGD). Then, the different

loss functions that will be needed in this thesis will be introduced. Finally, we will

go through the ‘second level’ of performance estimation and optimisation, employed

to account for architecture and training quality after the weights have converged.

Optimising the loss

Depending on our task and label availability, let’s consider a differentiable loss L

to be minimised. A straightforward way of finding some function’s minima is to

follow the slope downwards iteratively (“gradient descent”). Furthermore, having

multiple data points to account for in the computation of the loss, a stochastic

estimate of the gradient can be used. This is the approached followed by the SGD
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algorithm [160], as expressed in Eq. 2.3. The amplitude of the update is defined

by the learning rate α, which takes values between 0 and 1.

θ(i+1) = θ(i) − α × Ex,y[∇θL(y, gθ(x)]. (2.3)

The choice of learning rate is critical to achieve convergence of the model’s

parameters. Indeed, a too small learning rate might result in getting stuck in a

local minima, whereas with a too large one the actual minima might be skipped

and the procedure may diverge. No generic learning rate is good for every task, so

it will be one of the hyper-parameters to be tuned (see section 2.1.2). Moreover,

the data used to compute the loss and update weights at each step (Eq. 2.3) needs

to be defined: it is called a batch. Using the whole dataset at each step would be

too costly in memory and computation, and using only one sample would hardly

converge (the gradient would oscillate in different directions). Mini-batch SGD

thus consists in using only a sub-sample of the available data at each θ update. In

a compromise between computation cost and each batch being representative of

a global direction to follow, a “batch size” (number of data points) needs to be

defined. It is part of the hyper-parameters to be tuned (see section 2.1.2).

To enhance convergence quality and speed, the community is now opting for

learning rates that evolve through the course of the optimisation. This evolution

(termed learning rate scheduling) can be a simple exponential decay, a decay when

the loss plateaus, or more advanced periodic schedules with warm restarts [117].

No definite agreement has yet been made on the right schedule, and the answer

might again be task specific.

Methods like SGD to iteratively update the model’s parameters depending on the

loss gradient are called optimisers. Several variations of SGD have been proposed

since its original formulation, especially with gradient smoothing. The nesterov

momentum [188] as well as the gradients’ moments [101] serve that purpose.



20 2.1. Neural networks for computer vision

Classification and detection losses

Because it will be needed for SGD, the chosen loss to optimise needs to be convex

and differentiable. For our classification tasks, the accuracy is therefore not suitable

since it relies on the argmax of the output vector. We will rather choose the

Cross-Entropy (CE) instead, and will keep the accuracy for model evaluation,

selection and validation (section 2.1.2).

The definition of the CE classification loss H is given in Eq. 2.4, with y the

one-hot encoded label3, ŷ the vector of predicted probabilities for each class, and

C the set of possible classes.

H(y, ŷ) = −
∑
c∈C

yc log(ŷc). (2.4)

To get normalised predictions of the model homogeneous to a probability distri-

bution, we use the SoftMax function described in Eq. 2.5, given the unnormalised

model output z (also called logits).

ŷc = pg,θ(x|c) = SoftMax(z)c = ezc∑
k ezk

∈ [0, 1],
∑

c

pg,θ(x|c) = 1. (2.5)

This is appropriate for the multi-class classification tasks, when a higher

confidence for an class implies lower probabilities for others. When solving multi-

label classification tasks however, a sample can be assigned multiple classes, making

the SoftMax assumption not appropriate. The Sigmoid function is then rather

used to normalise logits to probability distributions (Eq. 2.6), and the sum of the

independent Binary Cross Entropys (BCEs) as a loss.

Sigmoid(zi) = 1
1 + e−zi

. (2.6)

The BCE is simply a special case of the CE, with C = 2. However, we can use

single valued labels y and prediction ŷ for its computation (Eq. 2.7).
3Vector of zeros except for the true class which is one
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BCE(y, ŷ) = − 1
N

N∑
i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi). (2.7)
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Figure 2.2: Sigmoid function (Eq. 2.6).
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Figure 2.3: BCE loss (Eq. 2.7).

Through this thesis, the binary classification will be used as a proxy to solve

detection tasks (one class being the target event to detect, and the other anything

else). When running a classifier model post training, the predicted class will

be argmax(z). For binary classifiers however, the output becomes a single value

denoting the confidence in the presence of one class, equivalent to a detection

confidence. A threshold is then set to binarise this continuous value (yielding

a presence/absence decision).

Representation learning losses

The losses previously mentioned are suited when a sufficient amount of labels

are available for supervised learning. When few or no labels are available, the

literature proposes frameworks to learn semantically relevant embedding spaces,

used subsequently by clustering algorithms or in supervised fine tuning. We call

this process deep representation learning. Since this learning paradigm does not

rely on labels for optimisation, it is referred to as Self Supervised Learning (SSL).

Triplet loss and contrastive learning Contrastive learning is a branch of SSL

algorithms, where we enforce the models’ output projection to ignore transformations

applied to the input (transformations that do not imply a semantic change to the
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Figure 2.4: Illustration of the contrastive learning approach. The anchor and the
negative are randomly sampled from the database, whereas the positive is a hand crafted
transformation of the anchor. The distance metric to be minimised/maximised varies
among implementations.

data). For that purpose, we will minimise the distance between the projection

of a sample and that of its transformation w.r.t. the projection of other samples

(see Fig. 2.4). In this way, rather than directly learning an embedding space for

discrimination, the model is trained to learn an embedding space that reflects

a desired notion of similarity and difference (the contrast). The mathematical

formulation of this objective is termed as triplet loss since it uses the projection

of three samples: an anchor (the original sample), a positive (the transformation

of the anchor), and a negative (another unrelated sample). Several metrics have

been used in the literature to measure distances between embeddings :

• The cosine similarity (SimCLR [31])

• The cross-entropy (UDA [209], fixMatch [180])

• The cross-correlation (Barlow [211])

• The mutual information (Invariant Information Clustering (IIC) [94])

These contrastive losses can also be combined with a regular classification loss

in a semi-supervised paradigm, as seen in fixMatch [180] and UDA for instance.
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They can then be considered as a form of training regularisation (see section 2.1.5).

Triplet loss and Siamese neural networks In a similar fashion than with

contrastive learning, the triplet loss can be used in a supervised context. In this case,

the positive of the triplet is a sample drawn from the same class as the anchor, and

the negative is a sample from another class. We call this approach Siamese networks

[23, 103]. Despite its use of labelled samples alike regular supervised classification

training, this method focuses on learning an embedding space to measure samples’

similarity, rather than an embedding space to discriminate among classes.

Reconstruction loss In other SSL frameworks such as Auto-Encoders (AEs)

(see section 2.1.4), we will use a reconstruction loss, that reflects the fidelity of

the reconstructed sample w.r.t. the original input. This can simply take the form

of a Mean Square Error (MSE) between the input and the reconstructed image

(pixel loss). There are also more advanced approaches such as the perceptual loss

which uses the MSE in the latent space of an independently trained encoder to

have comparison at a higher level than pixel wise [95].

Model validation

Once our model has optimised the loss function until convergence, we usually want

to measure its performance with interpretable metrics, and with new data.

Performance validation metrics (detection) For detection tasks, which are

the most common in this thesis, these metrics reflect the proportion of target

signals that we won’t miss (recall) and the proportion of detections that will be the

signal we look for (precision). This is typically described via the areas under the

Reveiving Operating Characteristics (ROC) and Precision Recall (PR) curves. For

varying thresholds, they give average values of recall/fall-out and precision/recall

respectively. Note that the area under the ROC and PR curves will be referred

to as Area Under the ROC Curve (AUC) and mean Average Precision (mAP)

respectively. Equations 2.9 and 2.10 formulate their computation with rec, prec,
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and fal denoting recall, precision and fall-out respectively. TP , P , PP , FP , and

N denote numbers of true positives, positive ground truths, positive predictions,

false positives, and negative ground truths respectively. Some are a function of a

threshold noted λ, used to binarise continuous prediction values.

rec(λ) = TP (λ)
P

, prec(λ) = TP (λ)
PP (λ) , fal(λ) = FP (λ)

N
, (2.8)

AUC =
∫ 1

0
rec(λ) dfal(λ), (2.9)

mAP =
∫ 1

0
rec(λ) dprec(λ). (2.10)

These two last metrics are similar, but differ on the measurement of false alarm

rate: the mAP normalises on the number positive predictions whereas the AUC

normalises on the number of negative samples. This difference has a significant

impact especially with imbalanced datasets.

Performance validation metrics (classification) For multi-label classification

tasks (each sample can be assigned to multiple classes), we will average the

independent detection performance of each class. As for multi-class classification

(each sample is assigned to a single class), we will rather compute the accuracy as the

rate of correct predictions. Averaging methods for the performance metric should be

chosen to account for class imbalance or not (i.e. averaging the performance per class

before averaging between classes or averaging performances per samples directly).

Performance validation metrics (representation learning) Latent represen-

tations learnt by optimising a triplet loss or a reconstruction loss are intended to

reflect semantic similarity. Therefore they can serve to measure relevant distances

between samples, allowing their clustering.

To measure the relevance of clusters against a set of labels, the Mutual In-

formation (MI) noted I(X; Y ) can be used. It is computed as the Kullback-

Leibler (KL) divergence between the joint and the marginal distributions of labels

X and clusters Y (Eq. 2.11).
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I(X; Y ) =
∑
y∈Y

∑
x∈X

P(X,Y )(x, y) log
(

P(X,Y )(x, y)
PX(x)PY (y)

)
(2.11)

To compute the Normalized Mutual Information (NMI) (between 0 and 1), one

can divide I by the average of the entropy of X and Y (Eq. 2.12).

NMI(X; Y ) = I(X; Y ) ∗ 2
H(X) + H(Y ) (2.12)

Validating with new data To reduce human effort, we usually desire models

to be applicable to different recording devices, locations and background noise

conditions. However, ANNs have the tendency to overfit, showing a decrease in

performance on data different from those seen in training. In machine learning, to

account for this potential overfitting, models’ performance are usually measured

on new data (not seen in training). It is called the test set, as opposed to the

training set which is used for the iterative loss optimisation.

When designing experiments, one must ensure that the test set is significantly

disjoint from the training set to relevantly measure generalisation. For instance, in

sound event detection tasks, we might want to test our model on recording devices,

environments, and emitters that have not been observed during training. How well

the model performs facing such domain shifts is the only reliable measure that

should be taken into account, especially if we want the model to be reusable in new

conditions. In the contrary, if a model has been trained and tested on similar data,

a large performance drop should be expected as soon as the data changes.

Hyper-parameter tuning

We mentioned the iterative optimisation of a loss through the update of the model’s

weights (Eq. 2.3), but other parameters can be tuned to enhance performance. The

model architecture and the optimiser have numerous settings that need to be fixed

before training and have a huge impact on the training in both convergence speed

and the found loss minima. We call them hyper-parameters.
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Often, hyper-parameters are tuned to optimise performance on a separate set of

data called ‘validation set’. Doing so, we keep the test set for the final performance

evaluation, and avoid finding hyper-parameters that would be specific to the test set.

Throughout this thesis, accounting for the efforts put into having a test set disjoint

from the training set and their sufficient size (reducing the probability of overfitting

hyper-parameters), the test set was directly used to tune hyper-parameters.

Each model training taking at least several minutes on a super computer, the

exploration of hyper-parameter combinations to improve model performance is a

challenging task. Dedicated Algorithms have been proposed to efficiently explore

the hyper-parameter space. They combine several principles among which the

early stopping of low performing models [113], as well as muting high performing

ones for the next trials [89].

2.1.3 Layers

As previously mentioned, the accumulation of layers of neurons (linear transfor-

mations) forms the basis of ANNs functioning. However, several other types of

layers exist. Let us dive deeper into the different layers that will be needed for

this thesis, and each of their specific utility.

Convolution

Convolution is a mathematical operation that describes the integral of the point-

wise product of two functions, with a varying shift on the input variable. It is

usually noted with the asterisk symbol (see Eq. 2.13, given a kernel f of size

M and a function g).

(f ∗ g)[n] =
M∑

m=0
f [m] × g[n − m] (2.13)

Typically, in image processing, we will use this operator to slide a filter (or

kernel) over a larger image. The output of the convolution will be maximal where

the filter matches most the image, or in other words where there is the strongest
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correlation. In 1995, LeCun et al. [111] introduced the concept of using convolution

operators in neural networks; Convolutionnal Neural Networks (CNNs) were born.

Before that, pixels where given independently to input neurons. The input

image size was thus fixed for a given network architecture, and a displacement of

patterns within an image would mean a totally different response of the network.

With CNNs, the network’s neurons take the form of kernels (or filters), which are

convolved onto input images. Like so, patterns are searched all over the image,

independently of their placement.

This behaviour is called spatial invariance, and is crucial for pattern recognition

in images (looking for a cat within an picture or a vocalisation within a spectrogram

for instance, independently of their placement). This characteristic led CNNs to

become unavoidable in the field4.

In terms of mathematical definitions, a traditional ANN layer is described as

y = Wx + b with x ∈ Rin an input vector, and y ∈ Rout an output vector. In deep

neural networks, the input of a layer is the output of the preceding one. The weights

W and b are thus matrices defined in Rout×in and Rout respectively, with in and

out being the number of neurons in the preceding and current layers respectively.

As for CNNs, a layer is no longer composed of a stack of neurons, but rather a

stack of kernels. The behaviour of a kernel of width wk and height hk is formulated

by Eq. 2.14, given an input of width w, height h, and depth d.

Y = W ∗ X + b, X ∈ Rh×w×d, A ∈ Rhk×wk×d, b ∈ R (2.14)

The convolution integration (sum) is done over the 3 dimensions, but the shift

will occur on the width and height dimensions only, making Y ∈ Rh×w. The outputs

of each kernel of the layer will eventually be stacked to form the depth dimension

for the input of the next layer5 (see Fig. 2.5).

4Let aside the recent rise of transformers for computer vision [144]
5The colour dimension of input images are also put as depth dimension
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…
input kernels output

Figure 2.5: Convolution layer. Blue denotes a slice of the image, a kernel, and the
resulting point in the output image (the sum of the point-wise product between the two).
The number of kernels will define the depth of the output cuboid.

A CNN layer is thus defined by the number of input features it processes, its

number of kernels, and their width and height. The number of trainable parameters

in a layer is given by Eq. 2.15.

#θ = din × wk × hk × dout + dout. (2.15)

Depth-wise separable convolution

As presented in the previous section, convolution kernels are cuboids, with a depth

that fits the depth of the input. The filters are thus designed to find patterns

that are interconnected depth-wise. However, often, we might want patterns to be

filtered independently through the input image depth, for a subsequent depth-wise

combination. This is the idea introduced by depth-wise separable convolutions,

first used in the context of a CNN by Chollet [32].

In this new type of convolution layer, we dissociate the spatial filtering and

the depth-wise combination in two stages, as opposed to regular convolutions that

process it all at once. A kernel remains cubic, but the convolutions are separated

depth-wise, thus yielding a cuboid, when a regular convolution kernel yields a flat

image. The combination of the features then happens with the point-wise stage,
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…

depth-wise stage point-wise stage

Figure 2.6: Depth-wise separable convolution. In the depth-wise stage, each depth
bin is convolved with its own kernel independently. For the point-wise stage, the depth
dimension is combined point by point by various vector kernels, each of which will result
in a depth bin in the output.

similar to a convolution with a kernel of width and height 1. This stage can be

repeated to obtain an output depth (see Fig. 2.6).

For comparison with the regular convolutions, the number of trainable parameters

in a depth-wise separable convolution layer is given by Eq. 2.16.

#θ = din × (wk × hk + 1 + 2 × dout) (2.16)

Having less parameters involved in a network means less computational com-

plexity for inference and for weight updates. Moreover, this type of convolution

has shown improved generalisation performances for computer vision tasks [32].

Indeed, limiting feature inter-dependence could limit potential overfitting, alike

the dropout [184] technique introduced later on.

Pooling

As previously mentioned, convolution enables spatial invariance. However, it

doesn’t treat the scale problem. Indeed, some patterns might have to be detected

independently of their scale in input images. Moreover, detecting large patterns

would require large kernels, which are expensive in computation and memory. For

this purpose, pooling layers enable a progressive decrease in image resolution (on

the width and height dimensions), so that deeper layers can have a larger scale

view without requiring larger kernels.
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Often, we want to simply denote if features (depth bin) were activated in a

given area, with a lower resolution. Max-pooling layers are well suited for this,

simply keeping the maximum value in a window with a stride > 1 (the stride

is the amplitude of windows’ steps in pixels). Typically, max-pooling layers are

placed after 2 or 3 convolution layers.

Non-linearity layers

Even if they are spatialised, convolution layers remain a simple linear transformation

of the input, and accumulating linear transformations successively is equivalent

to a single linear transformation (see Eq. 2.17).

w2(w1x + b1) + b2 = (w2w1)x + (w2b1 + b2) (2.17)

Therefore, building deep networks by accumulating layers of neurons would not

add to the complexity the network is able to model. In order to model non-linear

functions up to a great complexity, non-linearity layers in-between linear layers

are thus needed. Common non-linearity layers are Rectified Linear Unit (ReLU)

(y = max(0, x)), leaky ReLU, TanH, among others.

Moreover, functions such as ReLU allow to insert zeros in numerous dimensions

of vectors. This serves the stabilisation of gradients during the optimisation and has

an effect of sparsity enhancement (latent representations lie in lower-rank manifolds).

2.1.4 Architectures
Projection using CNNs

Before ANNs, non linear Support Vector Machines (SVMs) [2] were used for a

similar purpose: learning the optimum projection of data points to make them

linearly separable. Only their approach to optimisation differ. In our case study

of CNNs, we typically want to project an image from the pixel space to a lower

dimensional space that embeds semantic content. We often refer to CNNs as

encoders for this projection property.
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Figure 2.7: Visual Geometry Group (VGG)16 architecture [175]. Dimensions at each
layer are given in this order: height × width × depth (image taken from Ferguson et al.
[54]). The encoder part of the CNN is in blue and red, and the projection part is in green.

The projection is usually the last operation of a network, and done using fully

connected layers after flattening the image (compression of the width, height,

and depth into a single dimension, see Fig.2.7). In the case of classifiers, the

dimensionality of the output projection is defined by the number of possible classes,

each dimension denoting the confidence for one class.

Interpretation of the model’s output

For classifiers, the dimensionality of the output is defined by the number of possible

classes for our task. Indeed, each output feature will describe the confidence of the

model on the presence of one class in the input. We will thus train our model to,

given an input and its associated class(es), maximise the confidence value of the

‘present’ class(es), while minimising those of the ‘absent’ class(es). For the case of

binary classification, networks can have either one or two output feature(s)6.

Standard architectures

Numerous architectures have become a de facto standard and are commonly used

by the deep learning community. In most cases, starting the design of a new
6Single output models can be seen as detection systems, as we will see through several use

cases in this thesis.
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architecture from scratch seems unnecessary and counterproductive (as long as

the task at hand is relatively similar to the one of the standard architecture).

Through this thesis, experiments will make use of three architectures coming from

the ImageNet computer vision benchmark [43]: VGG [175] and ResNet18/50 [81].

• The VGG16 architecture is presented in Fig. 2.7, and is a classic convolutional

encoder tailed by fully connected layers.

• The ResNet18 and ResNet50 architectures are composed of residual blocks,

which introduce ‘skip-connections’ (the output of a block is the sum of its

processed input and the original input). Their associated number denotes the

number of layers that composes them.

These two types of architectures were chosen as they are (or have been)

the baseline in image classification tasks, therefore considered standard CNN

architectures, even for bioacoustic tasks (see section 2.2.4).

Auto-Encoders

As seen in the previous section, encoders can serve classification tasks, but they can

also take part in bigger systems such as AEs. AEs may serve tasks of dimensionality

reduction, operated with an encoder (see Fig. 2.7). To enforce the conservation

of information, the encoder is followed by a decoder, that reconstructs the input

image from the low dimensional space (called bottleneck). The encoder and decoder

combination (called AE) is trained to compress and reconstruct the input most

faithfully, despite the low dimensional bottleneck.

The compression that AEs offers enables a removal of random or unstructured

information (denoising), and a lower dimensional space which often facilitates

clustering. Indeed, clustering relies on sample distance estimations which are

unreliable in the pixel space and suffer the curse of dimensionality.
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Augmentation procedures

Input sample

Figure 2.8: Using data augmentation enables new samples to be derived from original
ones, while conserving the label. Transformations are randomly sampled among several
texture and position alterations.

2.1.5 Training regularisation

Methods employed during training to reduce potential overfitting and enhance

generalisation are called regularisation. They are especially relevant when a limited

amount of training data is available (the case of many bioacoustics tasks). Some

of these approaches come down to increasing the variability of the data both in

the input and directly in the activations of the network.

Data Augmentation

Introducing variability to the input data is widely used to avoid overfitting, especially

with small datasets. The idea is to generate new data samples out of the existing

ones, thus increasing the dataset size, without needing more annotation. To do

so, we apply randomised transformations, realistic or not, with the only constraint

that we must ensure not to change the sample’s class. For image classification,

RandAugment [37] has now been accepted as the standard augmentation policies,

combining texture and shape transformations (see Fig. 2.8). We will go through

data augmentation for acoustic tasks in section 2.2.3.

Another branch of data augmentation worth mentioning is MixUp [214], which

combines two input samples and their labels, thus creating ‘in-between’ data points.

The combination takes form as a simple weighted sum of inputs and labels, which



34 2.1. Neural networks for computer vision

Figure 2.9: Error rates on CIFAR-10, CIFAR-100, SVHN and STL-10 on 5 different
folds (taken from Sohn et al. [180]).

we will feed our model with like a regular sample. This simple concept of giving

mixtures of 2 instances as training samples has shown to improve generalisation

in most computer vision tasks with standard architectures [214].

Within-network regularisation

By introducing perturbations and variability within the network, we can mitigate its

dependency to highly specific events, presumably increasing its robustness. Dropout

[184] follows that incentive by randomly deactivating neurons or kernels (putting

their activation to 0). The probability of discarding is defined by the dropout

hyper-parameter p, commonly set to 0.25.

A second common way to regularise the network while training is to enforce

the model to rely on as few weights as possible [106]. To do so, we introduce

a new term in the loss: the L2 norm of all parameters, weighted to control its

impact. We call this method weight decay, and its weight introduces another

hyper-parameter to the learning framework.

Leveraging unlabelled samples

As seen in section 2.1.2, contrastive losses can be used to train encoders for resilience

to data augmentation. Several algorithms have been published to incorporate this,

often termed as consistency training. Tab. 2.9 summarises their performances on

semi-supervised learning datasets with varying proportions of labelled samples.

The fixMatch algorithm [180] combines a supervised loss, pseudo labelling, and

consistency training in one framework to achieve SOTA performances for the

tasks with the fewest labels.
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2.2 Cetacean acoustic detection and neural net-
works

After presenting CNNs in their original context of computer vision, let us discuss

their application to cetacean monitoring. This section starts with techniques

used before the apparition of ANNs in the field. It will then review acoustic

pattern recognition via spectrogram images, followed by specific techniques and

past use cases of PAM using ANNs.

2.2.1 Automated PAM
Template Matching

A straightforward way of implementing cetacean vocalisation detection mechanisms

is to search for localised energy in a target frequency band, and yielding a detection

when it surpasses a given threshold. For instance, it is known that some fin whale

vocalisations are 20 Hz centered pulses that last approximately 1sec. The signal can

thus be analysed in search for localised energy peaks in that time / frequency range.

Further extending this concept, strong correlations between recordings and

a prototype of target signal can be looked for directly. This can be achieved

either in the time domain (waveforms), the frequency domain (spectrums), or in

the spectro-temporal domain (spectrograms). We call these techniques template

matching, or matched filter.

Such approaches have been used extensively [22, 125, 204, 8, 125], but still suffer

from the fact that they only work when target signals show enough consistency to be

described by one or several templates. This is not the case for orca vocalisations for

example, that show great spectro-temporal variability. Techniques such as dynamic

warping can, to some extent, help coping with this challenge, as demonstrated

by Somervuo [181] for bird classification.

Pitch tracking

Other detection and classification algorithms rely on the fundamental frequency

(or pitch) contour of vocalisations. It can be estimated via the instantaneous peak
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Figure 2.10: Difficulty in estimating the pitch on orca calls (OrcaLab recording). This
estimate was done via the auto-correlation algorithm using the parselmouth python
package [90].

frequency, spectrogram thresholding, or spectrum auto-correlation for instance.

Once the pitch contour is extracted, one can infer features such as the duration,

frequency range, or frequency variation. These can later serve filtering and/or

clustering of vocalisations, potentially enabling the identification of species or

vocalisation units [12]. Contours can also be compared directly as pitch sequences

to measure similarity between vocalisations. In this context, dynamic time warping

can be used to cope with temporal distortions, as shown by Brown et al. [26] for orca

call classification, and by Deecke and Janik [40] for automated unit categorisation.

However, as Figure 2.10 demonstrates, these pitch based methods still suffer from

the difficulty to robustly estimate frequency contours, especially in low Signal to

Noise Ratio (SNR) conditions and in the presence of transitory impulses (odontocete

clicks for instance). Nonetheless, more robust frequency contour estimation methods

are being developed [114], (as compared to spectrum auto-correlation presented

in Figure 2.10 and used by Deecke and Janik [40]).
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Machine learning

Once vocalisation features were extracted (via the pitch or Mel Frequency Cepstral

Coefficientss (MFCCs) for instance), machine learning algorithms have been used to

classify them in supervised and unsupervised settings. Roch et al. [161] for instance

compared SVMs and Gaussian Mixture Models (GMMs) for the classification of

odontocete clicks based on MFCCs. Brown and Smaragdis [25] on the other hand

used a GMM and Hidden Markov Model (HMM) based approach to classify orca

calls. Esfahanian et al. [50] on the other hand explored the classification of dolphin

whistles using time-frequency contour features and an SVM.

These methods heavily depend on their input features, often either too specific

and not estimated accurately (pitch) or too generic and giving only a gross

description of the signals (MFCC).

Overall limitations

All in all, despite efforts to build robust algorithms [82], they hardly cope with

the wide variety of perturbations found in underwater recordings. Indeed, these

induce acoustic masking and heavily alter signals, hindering template correlations

and/or pitch estimates. Furthermore, noise from boats, waves, currents, sonars,

or even earthquakes take a variety of acoustic forms, that potentially strongly

correlate with whale vocalisation templates [204].

In a general sense, for studies to base their results on automatic detections,

underlying algorithms need to be robust to low SNR conditions and heavy distur-

bances, or important biases will be introduced. Take for instance studies on the

impact of marine traffic on the wildlife: if boats trigger or impeach detections,

further interpretations will be dramatically falsified.

Tuning templates and/or thresholds to cope with all possible perturbations can

be very demanding, and sometimes the global compromise simply does not exist.

In that sense, ANNs might be able to push forward automated PAM systems, by

seamlessly learning robust feature representations for the detection and classification

of cetacean vocalisations.
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2.2.2 Preparing the network’s input (frontend)

A widespread preliminary feature extraction of acoustic signals is its frequency

decomposition, this section describes how waveforms can be compiled into images

(spectrograms).

Let us start with an acoustic recording. It is described digitally by a sequence

of samples x = {x[i]}1..n that denotes the evolution of pressure through time. The

number of samples recorded per second is given by the sampling frequency, noted fs.

Fourier

The Fourier transform is a major tool in signal processing. It allows to describe any

signal as a sum of sinuses, each characterised by an amplitude and a phase. This

representation is called the spectrum. Given our acoustic signal x, the Discrete

Fourier Transform (DFT) will yield a spectrum Xf that gives complex numbers as a

function of frequencies. These complex numbers describe each frequency component

of the signal, with the amplitude as the modulus and phase as the angle. The

behaviour of the DFT F of a signal of size N is described by Eq. 2.18.

Xf = F(x)f =
N∑

n=0
x[n]e−i 2π

N
fn. (2.18)

Fast Fourier Transform (FFT) implementations of the DFT are available,

enabling a reduction of the complexity from O(n2) to O(nlog(n)).

Short Term Fourier Transform

Numerous signal processing techniques, especially those presented in this thesis,

rely on spectrograms. A spectrogram is a matrix representation of a signal, with

values denoting magnitudes (square modulus of Fourier values) for each frequency

and time bin (rows and columns respectively). It results from the juxtaposition

of successive DFTs, computed by sliding a window over the signal.

Sf,t =
∣∣∣∣NF F T∑

n=0
x[t × hop + n]e−i 2π

NF F T
fn

∣∣∣∣2. (2.19)
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Throughout this thesis, spectrogram rows and columns will be referred to as

frequency bins and time bins respectively.

Several parameters are to be set prior to the Short Term Fourier Transform

(STFT) computation, that define the sliding window’s behaviour: the window size

NFFT and the hop size hop. Along with the sampling frequency fs, these will

define the range and resolution of our resulting spectrogram :

• The sampling frequency will affect the maximum frequency represented by

our spectrogram: f ≤ 1
2fs (Nyquist theorem).

We sometimes downsample the signal during preprocessing to withdraw high

frequency contents when non relevant. Downsampling also drastically reduces

the downstream computation complexity.

• The window size defines the length of the signal to be decomposed.

A bigger window will yield a more detailed representation frequency wise.

However, it will also blur short transitory events (the yielded spectrum is an

average of the frequency contents in the window).

• NFFT is the number of points used in each DFT. It will define the number of

frequency bins of the resulting spectrogram: ∆f = fs

NF F T
. The DFT size can

be larger than the window size, in which case borders are filled with zeros (zero

padding). Like so, short transitory events are preserved as compared to using

a larger window. Note that a larger NFFT also implies more computation

per DFT.

• The hop size defines the temporal sampling rate of the spectrogram:

∆t = hop
fs

.

A smaller hop size will yield a more detailed spectrogram, but also implies

more computation (each step demands a DFT).

These parameters have a crucial impact on the spectrogram, and thus on

how well our target signal(s) will be represented (see Fig.2.11). Finding the

appropriate spectrogram settings is thus the first step in building any spectral

based detection algorithm, ANNs included.
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Figure 2.11: Spectrograms of an orca call (OrcaLab recording) with varying NFFT .

Alternative to the Fourier transform Sometimes, both temporal and frequency

high resolutions are needed, and a satisfying Fourier window size does not exist.

While Fourier uses the same window size for all frequencies, algorithms such as the

wavelet transform propose a non uniform sampling of the time-frequency space,

allowing for a better compromise in terms of temporal and frequency resolution.

Only a wavelet transform allows for a satisfactory representation of both low

frequency and high frequency events, which can be useful in PAM applications.

Researchers have thus studied the use of wavelet transforms as frontends, for

instance with cetacean click detection [116]. Further studies have also experimented

on combining Fourier and wavelet transforms into multi-channel spectrograms, as

a frontend for speech recognition [6] or bird classification [213]. Also, Stowell and

Plumbley [187] have used chirplet transforms to analyse bird songs.

Nonetheless, the Fourier transform remains the choice in a wide majority of

applications, because of its convenience of use and its efficient FFT implementation.

Throughout this thesis, the large majority of experiments are based on the Fourier

transform, to focus more on the effects of other components of the analysis such

as downstream processing.
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Beyond the empirical choice of STFT parameters In machine learning

frameworks, finding the best spectrogram parameters can be part of the optimisation

process. For instance, it can be done via STFT differentiation [215], or trainable

Gabor filters [212] that recently reached SOTA performances on several acoustic

recognition tasks.

Indeed, when there is a wide variety of target signals, the empirical choice of the

right STFT parameters can be challenging. Optimising them through learning will

lead to a compromise between several parameters, but may not be optimally suited

for each type of target signals. Multi-channel spectrograms offer a solution to this

issue, by giving a stack of spectrograms with different parameters to the model

(they must be interpolated to match in time / frequency resolutions). Studies that

have experimented on this technique have not seen a significant improvement so

far [132, 193], let aside the computational cost implied by such approach.

Mel-spectrograms

Humans have a logarithmic sensibility to frequencies: we perceive a constant tonal

shift when frequencies are multiplied by a constant. Besides, harmonic structures

of acoustic signals also often show logarithmic behaviours. To have a spectrogram

representation that reflects this phenomenon, the Mel transform changes the linear

layout of a frequency domain into a logarithmic one: the Mel scale. The Mel scale

describes a frequency layout that follows human perception of tones in terms of

hearing range, but also such that a constant shift in Mel bin will be perceived

as a constant shift in tone. However, we can extend this scale to a wider range

of frequencies, thus extrapolating the human perception into frequencies suited

for the hearing range of cetaceans for example.

To build a Mel-spectrogram, a dot product is computed between a matrix of

logarithmically spaced triangular filters, and the STFT magnitudes. The relationship

in Eq. 2.20 is used to convert frequencies to mel bins, and an example of a resulting

Mel-spectrogram is given in Fig. 2.13.
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Figure 2.12: Example of Mel filterbank (set of triangular filters). Each colour represents
a filter, which will ponderate the input spectrum to yield a Mel frequency bin.

fmel = 1127 × log
(

fHz

700 + 1
)

. (2.20)

Range compression

In acoustics, the energy is usually measured in decibels (dB), a logarithmic

transformation of measured magnitudes such that E = 10 log10(S). Typically,

for spectrograms, this will shift the values from a logarithmic distribution to a

Gaussian distribution. The strength of the shift can be modulated by applying a

factor 10a to the magnitudes before computing the logarithm (log(1 + x × 10a), see

Fig. 2.13). The optimisation of the exponent a can also be part of the learning

framework, as proposed by Schlüter [169].

On the other hand, presumably more robust methods have emerged, especially

with the Per-Channel Energy Normalisation (PCEN) [199]. This method introduces

a dynamic gain control to adapt the compression range depending on local loudness

and reduce stationary noise (estimated via an infinite impulse response (IIR) filter

for each frequency bin, see Fig. 2.13). The formula for PCEN is given by Eq. 2.22,

given an input spectrogram E, and parameters ϵ, α, δ and r. M denotes the

IIR filtered version of the spectrogram, as given by Eq. 2.21, depending on the

smoothing coefficient s that impacts the filter’s latency. This method requires
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Figure 2.13: Comparison of frequency layouts (regular STFT versus Mel transformed)
and compressions for an orca call spectrogram. Notice how the 4 kHz stationary noise
gets removed with PCEN.

5 hyper-parameters to be set for initialisation and potentially to be optimised

end-to-end with the downstream model.

Mf,t = (1 − s)Mf,t−1 + sSf,t, (2.21)

PCENf,t =
(

Sf,t

(ϵ + Mf,t)α
+ δ

)r

− δr. (2.22)

Learnable frontends

Probably more than in any field, in the machine learning community, researchers

flee ad-hoc and hand-crafted approaches to rather choose fully learnable adaptive

frameworks. This is applicable to the spectrogram computation, a major step

in acoustic recognition. Several approaches have been proposed to learn custom

spectrograms and break free from the STFT.

Some directly learn convolution kernels from scratch to be applied in the time

domain [56, 141]. Others optimise known filters parameters, such as cardinal sinus

[157], spline [9], gammatone [167], or gabor [212].

The latter, called Leaf, has outperformed SOTA in 8 different acoustic recognition

tasks, but is still quite recent and remains very costly in computation (two orders
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of magnitude higher than a regular STFT). Thus, to this day the STFT and

optionally its Mel transform remain the standard approach to feature extraction

for acoustic recognition, despite their debatable anthropocentric nature and all

the efforts invested in replacing them.

2.2.3 Data augmentations for acoustics

As previously mentioned for image classification tasks, data augmentation is a crucial

regularisation method, especially when dealing with bioacoustics tasks with very

few labels available [186]. This section presents known acoustic data augmentation

methods, for the time domain and the spectro-temporal domain.

Addition of noise

Acoustic signals can simply be summed to be combined. A first augmentation

technique thus comes down to adding randomly generated noise to the input

sample in the time domain [133]. One can add white noise (flat spectrum), pink

noise (spectrum following 1/f) or brown noise (spectrum following −20dB/decade).

The latter being the closest to underwater ambient noise, it is the most relevant

to PAM of cetaceans.

Instead of synthesising random noise, one can also add soundscape recordings

[109]. To some extent, this is equivalent to the MixUp approach aforementioned.

Whether it is synthesised or recorded in situ, a weight needs to be set when

adding noise, defining its strength relatively to the input signal (the SNR). This

value can be fixed for the whole training, or sampled randomly for each generation.

SpecAugment

Alike RandAugment for images [37], a suite of generic audio augmentation policies

has been proposed for spectrograms: SpecAugment [143]. It includes time wise

dilation or compression (via the interpolation of pixels values), as well as the

masking of random time and frequency bands (see Fig.2.14).
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Figure 2.14: Demonstration of three common augmentation policies on orca calls
recorded at OrcaLab (top: original sample, bottom: augmented version).

The authors did not include frequency stretching in their SpecAugment suite,

perhaps because it was not appropriate for their task at hand, or since it is more

common to operate pitch shifts on waveforms [118] rather than on spectrograms [88].

SpecAugment has shown SOTA results in several acoustic recognition tasks

[143], with the drawback that it potentially converts the overfitting problem to

an underfitting problem. To cope with this, the authors propose larger networks

and longer training schedules.

Temporal / frequency shifts

Temporal and frequency shifts of spectrograms seem like a straightforward efficient

way of augmenting the data, by simply displacing patterns to be recognised (in

realistic ranges). As for the time shifts, as previously mentioned, CNNs offer

spatial invariance, making such data augmentation non significant. However, pitch

modulation potentially implies more than just a vertical shift for the resulting

spectrogram (see Fig.2.14). By simply speeding up or slowing down the input

sample (via resampling the waveform), the spectrogram is shifted frequency wise

but also stretched time wise. Pitch shifting has thus proven to be a relevant

data augmentation approach [118].
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2.2.4 Applications to bioacoustics

Now that CNNs have been introduced in their original field of computer vision, along

with their use in acoustics, I will finally present how the bioacoustics community has

made it its own, trying to overcome the domain specific challenges that come along.

Annotation optimisation

The amount of training data is crucial to a robust deep learning model. Besides,

despite efforts to develop reliable unsupervised algorithms, the performance they offer

is still not sufficient for relevant use in PAM contexts without human intervention.

Therefore, large amounts of labelled examples are still needed prior to developing

automated detection systems.

The usual annotation scenario starts with the access to a bank of audio signals.

When recorded by autonomous antennas, this typically means weeks or months of

recordings, with no other prior information than the presumed presence of some

species’ vocalisations. Listening to the whole recordings would be too tedious and

is therefore not viable. To efficiently browse through recordings and potentially

annotate certain sections, several approaches are found in the literature :

• Long Term Spectral Average (LTSA) enables a quick glimpse at frequency

distributions of several hours of data at a time [177],

• Running high recall hand crafted detection mechanisms allows for a first

extraction of potential signals of interests (pre-detections) [67, 49],

• Hand crafted filtering rules can sort out known false positives among pre-

detections [204],

• Clustering pre-detections via hand crafted features can group similar acoustic

events together [67],

• Dedicated interfaces can improve the efficiency of visualisation and annotation

of pre-detections and clusters [185, 34] (see Fig. 2.15).
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Figure 2.15: Example of an advanced annotation interface for mice vocalisations:
DeepSqueak [34]. (1) call statistics, (2) extracted contour, (3) spectral gradient of
spectrogram, (4) tonality and sound wave, (5) position in file.

Using one or several techniques mentioned above should suffice in yielding

several dozen positive and negative annotations, enough to start learning small

CNN models. To further increase the system’s performance, which is often not yet

robust enough when trained with few samples, active learning is the usual adopted

solution. Active learning consists in an iteration of three steps: training the model,

running it on unlabelled data, and validating or invalidating the model’s predictions

via human intervention. Looking for false positives with strong confidence (hard

negative mining) and vice versa will enhance the process by focusing on samples

that confuse the model [173].

The yielded annotations will found the basis of knowledge for our model, and

will further serve performance measurements. It is therefore crucial that no labeling

errors slip into our database, or it will negatively impact all following procedures. A

first pitfall is in the gathering of the initial database for active learning. Depending

on their frequency and source level, certain vocalisation might be missed by the

chosen algorithm or annotation procedure. If so, the model will never learn to detect

them. A second source of bias can be human annotators, for which Duc et al. [46] has
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demonstrated the potential subjectivity. To mitigate this effect, we can cross-validate

labels with several experts, and propose the ‘unsure’ label during annotation.

Deep representation learning for bioacoustic signals Clustering similar

signals into groups can drastically reduce the annotation effort. For this purpose,

similarity can be measured using hand-crafted features such as MFCC [38], or

features learnt via SSL for instance. Several papers explored this approach such

as Tolkova et al. [195] for birdsong annotation using an AE framework, Goffinet

et al. [76] similarly with a variational AE [102], or Jahangirnezhad and Mashhadi

[91] combining an AE reconstruction loss with the Deep Embedded Clustering

(DEC) loss [208].

The embedding space learnt via deep representation learning can not only

enable clustering for efficient annotation, but also serve classification models

directly. Indeed, either via a semi-supervised loss, or via network pre-training,

the performance of classifiers can be enhanced despite a reduced quantity labels

when fine tuning from relevant embedding spaces. In the case of using embeddings

for annotation via clustering, attention should be paid to the potential biases

induced (some classes might be favored by the similarity metric employed).

Transfer learning The method of using weights optimised on a third party

task to initialise a model (pre-training or transfer learning) has indeed proven its

effectiveness, especially when dealing with small datasets. The third party task can

be for instance a SSL paradigm such as training an AE on data similar to that of

the target task [13, 190]. On the other hand, it can also be a a totally unrelated task.

Indeed, fine-tuning from models trained on AudioSet [85] or even ImageNet [43] was

shown to be relevant for bioacoustics event detection [10, 216, 190]. The assumption

here is that early feature extraction are quite generic, and that knowledge gained

from very large datasets are useful for other tasks.
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Available databases

A common practice in the computer science community is to publish databases for

researchers to try their automatic systems on. They enable shared performance

metrics, essential to the objective comparison of models. An important element is

to be taken into account regarding the types of available annotations: some denote

the presence of events in a large window of recordings (up to several minutes), they

are called weak labels. On the other hand, strong labels give exact time positions

associated with target events. I will hereby present some of the available databases

for the detection and classification of cetacean vocalisations.

• The Watkins marine mammals sound database [168] proposes excerpts for

numerous marine mammal species from different recorders. It was used by

Lu et al. [119] with an AlexNet architecture (pretrained on ImageNet), and

by Murphy [132] with a ResNet architecture and multi-channel spectrograms.

One limitation of this database is that most of the recording devices and

locations are species specific, which hinders good generalisation measures.

• The Orchive database [134] presents annotation of Northern Resident killer

whales (NRKW) calls. It includes calls with their class label (call type, see

section 3.1.3) or just as positives, along with negative samples (boats and

other noises); all recorded at the OrcaLab laboratory. It was used by Bergler

et al. [14] with a ResNet architecture for call detection and unit classification,

and by Vargas [197] for classification using SVMs.

• The Detection Classification Localisation and Density Estimation of marine

mammals (DCLDE) workshops have published numerous datasets with differ-

ent target species and labeling (some of them offer only weak labels). It was

used by Shiu et al. [173] for Northern Right Whale (NRW) upcall detection

using LeNet and BirdNet architectures.

• The DOCC10 database [56] is an extension of the DCLDE 2018 dataset that

used an automated algorithm to extract strong labels from the available weak
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labeling. Samples include clicks from 10 odontocete species. It was used in

the same study to train an end to end deep classifier of a custom architecture.

• The acoustic trends blue fin library [128] offers almost 2,000 hours of recordings

from the Southern Ocean, annotated by a consortium of experts. Several

thousands of samples are available for each of the 7 call types from 2

mysticete species: the blue whale and the fin whale. By covering several

recorders, locations, environmental conditions and years, this database offers

an opportunity to robustly measure models’ generalisation performances.

Deep classifiers for bioacoustics

Since the introduction of CNNs in bioacoustics a few years back, numerous ex-

periments were published on the topic, either with public or private databases.

Most of them report their experiment with a standard CNN architecture on some

database, like a ResNet for orca vocalisation detection for instance [14]. Some

also report empirical studies of varying parameters such as data augmentation,

frontend or architecture [173, 4].

Other architectures than regular CNNs are encountered, such as a Recurent

Neural Networks (RNN)+CNN that integrates the prior of call rates into the

detection process [120], an LSTM on spectrogram for click detection [45], an ANN

that classifies odontocetes’ clicks without convolution [162], Siamese networks for

classifying blue whale calls [217], transformers for bird recognition [156], or a context

adaptive CNN that makes use of soundscape features to gain robustness [118].

Stowell [186] proposes a review gathering 159 articles on bioacoustics using

deep learning, 30 of which concern marine mammals. One important insight of

this review is a report on chosen CNN architectures. The most popular mentioned

are Resnet (23 papers), and VGG or VGGish (17 papers). Other tendencies are

described, but besides perhaps the use of spectrograms as inputs for CNNs, no clear

advantage emerges for a specific architecture or set of hyper-parameters.

Such reviews demonstrate how the automatic analysis of bioacoustic recordings

is still an open research subject. In this context, Brown et al. [24] explored a
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wide range of settings evaluated on multiple bird recognition tasks. They show

how there is not one generic workflow that is well adapted to every task. In a

similar paradigm, this thesis explores several methods trying to extract reusable

knowledge on their potential efficiency.
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2.3 Conclusion

Before diving into this thesis’ contributions, let us take a step back and get an

overview of the challenges and opportunities that come along the research problem-

atic.

Challenges

ANNs, despite having already some implementation in industrial systems, is still

an open research topic. This is even more true when it comes to its application

to PAM. Indeed, PAM brings specific problems uncommon to other domains of

application of ANNs, the main ones probably being the lack of annotations and

the scarcity of events to detect. As mentioned previously, training ANNs demands

large quantities of labels, which are costly to produce in terms of human effort.

When implementing image classification or speech recognition systems, one can

make use of large databases already available for these quite popular tasks. High

quality databases of cetacean vocalizations (large amount of annotations with

precise timestamps) are more rare. To cope with this, I will show in this thesis

how annotation processes can be optimized to reduce human effort.

Another challenge comes from the underwater conditions that highly impact

acoustic properties of signals. Since few researchers apply ANNs underwater,

they have to find their own way to cope with these conditions yet relatively

unexplored in the literature. Moreover, detection systems are most useful when

reusable across acoustic stations. This demands highly robust models, taking into

account the variability in potential noise exposition (e.g. depending on depth,

boat traffic, bathymetry).

Also, we will later discuss the need for PAM systems to be embedded into field

stations (section 6.2). This demands efforts in reducing the computational needs,

as well as building trustworthy algorithms, which can be challenging when having

relatively low control on ANNs’ behavior (ANNs are often described as ‘black boxes’

since their functioning is hardly interpretable).
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Another important challenge faced during this thesis was to sort out relevant

methods to explore among the wide variety of propositions. Indeed, ANNs being a

highly popular topic, dozens of different approaches are still being explored, with

few consensuses on universally reliable techniques.

Eventually, despite numerous occurrences of trained ANNs for marine bioa-

coustics in the literature, very few are found to be put in production yet [4]

(using the prediction to yield biological analysis). It is thus an ambitious objective

to finally bridge that gap between training experiments and production use of

deep learning models.

Opportunities

Even with few annotations available, large amounts of data can still be useful

when training ANNs, as section 5.5 discusses with unsupervised approaches. The

democratisation in autonomous recording units (ARUs) has already yielded Ter-

abytes of data which, even when containing only few signals of interest, can come

handy to train ANNs because of the data diversity they provide. Indeed, these

long recordings often demonstrate a wide variety of noises (e.g. from boat engines,

sonars, reef activity, waves, currents, or earthquakes). Moreover, data variability

can also arise from differences in recorders’ frequency responses, and/or placements

regarding the bathymetry.

This is a major challenge when building handcrafted algorithms, having to

compensate for each potential acoustic disturbance independently. However, ANNs

represent a great opportunity in that sense since they have the potential of learning

robust representations that can be resilient to the most diverse perturbations.

Section 4.6 discusses how one can make use of the variations in the available data

to rigorously measure a model’s generalisation performances, and/or use it to train

projections of sound that are most stable against such noise diversity.

Eventually, PAM strongly benefits from such robust systems, since they help

reduce the minimum SNR for detection as well as the amount of false alarms. A

first axis of benefits offered by this characteristic is that it facilitates the use of
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such systems in real-time applications, with implication for species conservation

via ship strike mitigation for instance.

A second axis of benefits is the yielded reliable statistics for large scale analysis

that would not have been feasible otherwise. This enables learning on presence

patterns, song structure evolution and to characterise communication systems for

instance (as demonstrated in this thesis’ chapter 7). Indeed, long term surveys

represent a good opportunity to yield biological insights, especially in blind datasets

(audio recordings with no complementary data such as behaviour) and in uncon-

trolled settings. Finally, these uncontrolled settings ensure that no behavioural

bias is induced, conversely to many laboratory experiments.
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In this chapter will be introduced the material used for the experiments conducted

throughout this thesis. It takes form as underwater acoustic data, containing several

types of signals, and recorded at different places and times. This chapter will thus

revolve around two axis: the studied signals, and the recording setups.

3.1 Target species and signals

The diverse set of target signals described here are those for which detection and

classification systems were built. Their characteristics are summarised in Table 3.1,

and each subsection then underpins the current knowledge about them, especially

regarding their context of emission.

55
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Note that for the signal types of Tab. 3.1, and throughout this thesis, stationary

refers to “signals locally stable in frequency” (calls, whistles) as opposed to transitory

signals (clicks).

Species Sperm whale Fin whale Orca Dolphin Humpback whale
Sub-order Odontoceti Mysticeti Odontoceti Odontoceti Mysticeti
Signal clicks 20 Hz pulses pulsed calls whistles calls
Signal type Transitory Transitory Stationary Stationary Stationary
Frequency (Hz) 12,500 20 [500; 5,000] [5,000. 20,000] [300; 3,000]
Bandwidth 20 kHz 2 Hz 100 Hz 20 Hz 50 Hz
Duration (sec) 0.001 1 [0.5; 2] [1; 2] [0.5; 1]

Table 3.1: Summary of the target signals for the detection systems built throughout this
thesis. For transitory waves, the frequency denotes the approximate centroid frequency,
for stationary signals it denotes its range

3.1.1 Fin whale (Balaenoptera Physalus) 20Hz pulses

As the second largest animal on earth, the fin whale produces very low-pitched

vocalisations, barely noticeable to the human ear. So far, bioacousticians have

documented 3 main types of signals emitted by fin whales: 100-30 Hz down-sweeps,

30 Hz rumbles, and 20 Hz pulses. They supposedly serve group cohesion [149, 200],

food signaling [166], and mate attraction [201, 36].
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Figure 3.1: Spectrogram (left) and waveform (right) of a fin whale pulse recorded by
Bombyx (the two figures share the same abscissa). STFT parameters are: fs = 100Hz,
NFFT = 128, padding = 50%, hopsize = 3.

In this thesis, I will focus on the most common signal: the 20 Hz pulse. It is

often further classified into two sub categories, named A and B, or classic pulse and
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Figure 3.2: Sequence of sperm whale echolocation clicks recorded by Bombyx in july 2018.
STFT parameters are: fs = 50kHz, NFFT = 1, 024, hopsize = 896, padding = 0%.

back-beat [171]. They highly resembles a Gabor wavelet: a sine wave enveloped by

a Gaussian (see Fig.3.1), and can be emitted either as single pulses, or in patterned

sequences, termed as songs [174]. The pulses and the sequences they take part in are

highly stereotyped: pulses show very low variability both in frequency and duration,

and when in sequences, the Inter Note Interval (INI) remains highly stable.

Fin whale song characteristics, especially the INI, are population specific [42, 29].

They also are subject to seasonal cyclic variations [138, 130], as well as long-term

trends [204, 83] (e.g. linear increase of the INI through years).

3.1.2 Sperm whale (Physeter Macrocephalus) clicks

Sperm whales produce echolocation clicks to navigate and locate preys during hunts.

Their large head contains a series of oil sacks surrounded by sound-reflecting air

sacs that allows for the amplification of the impulses [135], making it the most

powerful sonar in the animal kingdom [129] (the loudest recorded click was at

230 dB re: 1µPa rms).

Echolocation clicks usually come in sequences (see Fig.3.2), with the Inter CLick

Interval (ICI) ranging between 0.01 and 1 sec, usually decreasing when approaching

a prey [53]. The clicks lie around relatively low frequencies compared to other

smaller odontocetes (between 3 kHz and 30 kHz).
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Figure 3.3: Sequence of orca tonal calls recorded at OrcaLab in September 2016. STFT
parameters are fs = 22050Hz, NFFT = 1024, hopsize = 50, padding = 0%. The N..
labels denote each call type, with a ‘?’ showing an ambiguous one.

3.1.3 Orca (Orcinus Orca) calls

Orcas produce three types of signals: clicks, pulsed calls, and whistles [66]. As for

most dolphin species, clicks presumably serve echolocation, while the two other

more stationary signals would rather be used for communication. Pulsed calls are

highly harmonic, typically lying between 500 Hz and 5 kHz, and lasting up to 1.5

seconds (Fig. 3.3). On the other hand, whistles show little or no harmonic structure,

lay between 6 kHz and 12 kHz, and can last up to 12 seconds. In this thesis, I will

focus on the pulsed calls, referring to them as calls or vocalisations.

As shown in Fig. 3.3, some orca calls have stereotyped frequency contours that

have been classified into discrete types. These were proven to be community specific

(dialectic) [65], and subject to cultural evolution [41, 59]. The identification of

call types strongly contributed to the study of the orca’s social structures, and its

categorisation is widely accepted by the scientific community. Difficulties remain

however, for some calls to be attributed to one class or another, especially for non

experts. Indeed, despite calls being stereotyped, they still are prone to variability

which might lead to overlap between classes’ characteristics [66].

3.1.4 Humpback whale (Megaptera Novaeangliae) calls

The humpback whale song is among the most widely studied cetacean acoustic

signals. These sequences are mostly emitted by males during the reproductive
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Figure 3.4: Extract of a humpback whale song from the Carimam dataset. STFT
parameters are fs = 22050Hz, NFFT = 4096, hopsize = 48, padding = 50%.

season, presumably playing a role in courtship [84] (male-female and/or male-

male interaction). They follow strict hierarchical structures: series of units form

phrases that are arranged into themes, themselves combined in songs that can

last several hours [148].

Each component of the hierarchical structure of the humpback whale songs are

stereotyped, as seen in Fig. 3.4 with a sequence of stereotyped units. Moreover,

song structures are shared by individuals at a given place and time, with cultural

implications for their spatio-temporal evolution [205].

3.1.5 Dolphin (Delphinidae) whistles

Exceptionally for this type of signal, we do not target a single species, but

rather a family of species, the Delphinidae which includes sub-families such as

Globicephalinae, Delphininae, and Orcininae. They all produce whistles, which are

typically high pitched, tonal, and narrow-band. Their frequency contour can be

stereotyped [198], individual specific [27], and serve group cohesion [93].

3.2 Data at hand

In order to experiment on detection and classification mechanisms for the target

species and signals aforementioned, datasets are needed. Through this thesis, work

has been conducted on both recordings from local projects and publicly available

ones. They involve a variety of recorders, locations and time spans which are
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Figure 3.5: Sequence of dolphin whistles from the Carimam dataset. STFT parameters
are fs = 256kHz, NFFT = 8192, hopsize = 512, padding = 0%, Mel transformed from
5 to 40 kHz, and PCEN normalised. The stationary signal around 12 kHz is the remaining
self noise of the sound card used [11] (despite heavy mitigation via the PCEN).

Figure 3.6: Map of the 3 Mediterranean antennas used throughout this thesis.

described in this section, starting with the local projects of the DYNI team (Toulon

University), and followed by the public Blue and Fin whale acoustic trends dataset.

3.2.1 Data from DYNI

Table 3.2 summarises some of the data yielded by the partnerships and projects

that H. Glotin co-set up at Toulon University. They are stored locally in a Network-

Attached Storage (NAS) system, funded by the DYNI team projects and maintained

by the LIS laboratory. Each are briefly introduced in the following sections.
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Figure 3.7: (left) Installation of the Bombyx stereophonic antenna [74]. (right) Structure
of the Boussole antenna [107]

Boussole

This project consisted in a partnership between GIS3M, Pelagos marine mammal

sanctuary, and Port-Cros National Park. In order to study marine mammals

acoustic activity, a monophonic recording system was placed on the Boussole buoy.

Originally dedicated to marine optics, this buoy designed to be transparent to

swell was moored on the 2,440 meters deep sea floor, off the coast of Nice (France).

During 4 phases between October 2008 and September 2009, the system recorded

at 32 kHz, enabling the detection of vocalisations from sperm whales, fin whales,

and delphinids of the area (Stenella coeruleoalba, Globicephala melas, Grampus

griseus, Tursiops truncatus and Delphinus delphis).

A study prior to this thesis intended to monitor the acoustic presence of sperm

whales and fin whales in the yielded recordings. Sperm whale clicks were successfully

detected automatically but the processing of fin whale 20 Hz pulses was hindered

by the self noise of the system [107] (Fig. 3.8).
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Figure 3.8: Spectrogram of a noisy recording from the Boussole antenna (fs = 32kHz,
NFFT = 32768, hop = 5568). White dots denote the temporal position of some confirmed
fin whale 20 Hz pulses.

Bombyx

The Bombyx antenna was set up by a partnership between Toulon University, Port-

Cros National Park, TVT Innovation, and the Pelagos marine mammal sanctuary.

Being placed right on the rift of a 2000 meters deep canyon, it intends to allow

the monitoring of sperm whales of the area [74]. It did so during several phases

spread across 4 years (2015 to 2018). The area is of interest because of the nearby

canyons prone to sperm whale hunts [60], but also because of the ferries that travel

across on a daily basis. In addition to the noise that the latter generate, Bombyx

recordings are also subject to self noise (Fig. 3.9).

OrcaLab

Paul Spong founded OrcaLab in the 1970s [183], an in-situ observatory in the

Johnstone Strait (British Columbia, Fig. 3.10). It serves the visual and acoustic

monitoring of orcas, especially the population that feeds on the local salmon every

summer, the NRKW. From 2015 to 2020, the 5 hydrophones’ signals have been

recorded continuously (at 22,050 Hz until march 2018, then at 44,100 Hz).

The fact that the orcas regularly come to this relatively confined space represents

an unique opportunity to observe and listen to them 24/7 from the shore. Most
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Figure 3.9: Example of signal from the Bombyx antenna (high pass filtered, order 3
butterworth at 3 kHz). Grey dots denote sperm whale clicks, and red ones self noise from
the recording device. (top) Waveform. (bottom) Spectrogram (fs = 5kHz, NFFT = 512,
hop = 256).

Figure 3.10: Map of the OrcaLab observatory, with its 5 hydrophones and associated
acoustic range.

importantly, it guarantees no behavioural disturbance and continuous power and

data storage supply, the main constraints of most PAM approaches.

KM3Net

The ORCA detector of the KM3Net observatory is an array of detection units

allowing the measurement of neutrino particles [1]. It was installed on the seabed
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Figure 3.11: Map of recording stations with their recording effort for the Carimam
project, in the Caribbean archipelago.

2,440 meters deep, connected to the shore of Toulon (France) via fiber cable.

Hydrophones are used as part of a positioning system, but as a by-product, also

serve the PAM of local cetaceans.

Carimam

The Carimam project, led by a consortium composed of AGOA, the OFB and

Toulon University, is a network of 16 monophonic acoustic stations spread through

the Caribbean archipelagos. It aims at monitoring the rich marine mammal activity

of the area. To manage such a wide number of stations, low-cost and easy to install

recording devices [11] were sent to local environmental managers, who set them

up on existing mooring lines close to the shore.

Spatialisation

In Table 3.2, number of channels of each recording system are given. When

synchronised and with overlapping acoustic coverage, multi-channel data can serve

the spatialisation of acoustic sources. This is done via the computation of TDOAs

for signals to be triangulated. For Bombyx, since two hydrophones record 1.8 meters

apart (on the same horizontal plane, see Fig. 3.7), the two possible azymuths of
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acoustic sources can be computed. For Carimam, the stations’ acoustic coverage

do not overlap: the spatial precision is the acoustic range of the antennas. For

KM3Net, the 3 hydrophones are approximately 30 meters apart. With prior

knowledge on the depth of a source, its coordinates could be estimated (see section

8.2). Finally, for the OrcaLab network, hydrophones are several kilometers apart,

but sent to a centralised Digital Analog Converter (DAC) via radio waves, which

makes them temporally synchronised. Therefore, spatialisation could be performed

in the zones of acoustic overlap.

3.2.2 Blue and Fin whale acoustic trends dataset

In early 2021, a large acoustic dataset of antarctic mysticetes was made publicly

available [128]. It was built by a working group from the Southern Ocean Observing

System (SOOS) titled Acoustic Trends of Antarctic blue and fin whales (Acoustic

Trends Working Group; ATWG). The following is an extract from their terms of

reference [182]:

SOOS Capability Working Group Key Objective(s): Continue to develop

and mature a long term acoustic research program to understand trends in Southern

Ocean blue and fin whale distribution, seasonal presence, and population growth

through the use of passive acoustic monitoring techniques. Implementation of

these objectives will occur via:

1. analysis and interpretation of existing ad-hoc acoustic datasets in from the

Southern Ocean,

2. the development and implementation of an ongoing network of long-term

circumpolar underwater listening stations, and

3. development of novel and efficient methods for standardised analysis of acoustic

data collected in the Antarctic and sub-Antarctic

It is regarding this third axis of work that the Acoustic Trends dataset was built

and published, especially to share performance metrics for detection systems. It
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Figure 3.12: Map of the recording stations used in the Acoustic Trends dataset. The
map was published by Miller et al. [128].

gathers annotations from a group of experts, on data yielded by several recorders

at different locations from 2005 to 2017 (see Fig. 3.12 and Tab. 3.3).

Target signals are of 7 classes, 4 vocalisation types from blue whales (Balaenoptera

Musculus (Bm)) and 3 vocalisation types from fin whales (Balaenoptera Physalus

(Bp)). They all lie in low frequencies (between 20 Hz and 100 Hz) lasting from

1 to 15 seconds (Fig. 3.13). Since this data has not been subject to custom

annotations, I won’t expand on the target signals which are described in the

dataset publication [128].
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Figure 3.13: Distributions of lengths and frequencies for each of the 7 call types of the
Acoustic Trends dataset. (left) Balaenoptera Musculus, (right) Balaenoptera Physalus.
The figure was taken from [128].

Location Year Instrument Recordings (hours)
Balleny Islands 2015 PMEL-AUH 204
Elephant Island 2013 AURAL 707
Elephant Island 2014 AURAL 216
Greenwich 64S 2015 Sono.Vault 32

MaudRise 2014 AURAL 80
Ross Sea 2014 PMEL-AUH 184

Casey 2014 AAD-MAR 194
Casey 2017 AAD-MAR 187

Kerguelen 1 2005 ARP 200
Kerguelen 2 2014 AAD-MAR 200
Kerguelen 2 2015 AAD-MAR 200

Table 3.3: Summary of recorders’ characteristics and amounts of data available in the
Acoustic Trends dataset.
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4.1 Context and objective

Given the large amount of available recordings presented in the previous section, the

objective of this thesis is to build robust detection and classification mechanisms for

the vocalisations of species of interest. For this purpose and with the chosen approach
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Figure 4.1: Flow chart of procedures employed in the annotation processes.

of ANNs, annotated databases are needed. In the following chapter, procedures and

User Interfaces (UIs) suited for bioacoustic use cases are proposed, with an objective

of optimising annotation quantity while minimising human effort. For all tasks, the

annotation procedure can be summarised in 5 steps that are introduced Fig. 4.1.

This chapter starts by introducing a versatile and efficient approach to annotation

(thumbnail picking), which will be needed in the subsequent experiments. Then,

algorithms and UIs are proposed for several use cases, each being adapted to

specific constraints:

• To detect stationary signals (orca calls) and given some samples to tune

a handcrafted algorithm, a spectrogram binarisation approach is described

(section 4.3.1).

• Looking for transitory signals (sperm whale clicks) in stereophonic recordings,

I propose an interface to visualise and annotate TDOAs tracks (section 4.3.2).

• For a case when no target signals are available a priori, a generic extraction of

spectral distributions is used to cluster similar acoustic events (section 4.4.1).

• In contrast, when a large quantity of signals of interest are available, an AE

demonstrated the ability to learn relevant features to measure similarity and

enhance annotation efficiency (section 4.4.3).

Finally, after these methods were employed to gather an initial set of annotations,

active learning was conducted until a satisfying amount of labels are available

(section 4.5). They are presented with their chosen train / test split in the

last section of this chapter.
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Figure 4.2: Example of thumbnails ready to be annotated (picked), using the Thunar
file explorer [207]. Here, files are clustered spectrograms of orca calls (see section 4.4.3).

4.2 Thumbnail picking

Often during annotation procedures, we want to manually sort out true and false

positives from a set of detections. It occurred numerous times during this thesis,

after the aforementioned preliminary detection algorithms or during the active

learning process (section 4.5). Picking spectrogram images from their thumbnails

in file explorers appeared to be the most efficient way to do it (see Fig. 4.2).

The typical scenario in which this procedure was used is to pick false positives

from a set of detections. In a few minutes, an annotator can browse hundreds of

samples (exhaustively or not), and select dozens of files to move them to a new

folder. Using table identifiers as filenames then allows to retrieve the annotator’s

decision and save it for later use.

Annotating by organising of thumbnails in folders is not only efficient in time,

but also very generic (it requires no specific software installation). This comes

practical especially when needing annotation efforts from different people with

different operating systems for example.
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4.3 Gathering regions of interest

When choosing machine learning to build detection systems, we must first gather

annotations. For this purpose, we can start by running an algorithm that filters

the data using our prior knowledge of the target signal(s). These handcrafted

algorithms present limitations (as argued in section 2.2.1), but avoid having to go

through the whole set of available recordings to find our first training examples.

In detection algorithms, the user usually sets a threshold to binarise continuous

prediction values. For instance with cetacean vocalisation detection tasks, the

threshold is typically on the energy level at a specific frequency, or on the cross-

correlation coefficient (template matching approaches). The lower we set this

threshold, the lower the specificity (higher risk of false detections) but also the

higher the sensitivity (lower risk of missed detections). Conversely, by increasing

this threshold, we increase the specificity but decrease the sensitivity.

This trade-off is to be kept in mind when tuning handcrafted algorithms to

build a first database: we want just enough sensitivity to yield some true positives

(perhaps the ones with the highest SNR), while keeping the number of detections

low enough so that we can go through them in a reasonable amount of time.

The following paragraphs introduce two case studies of such approaches, one with

stationary signals (orca calls) and one with transitory ones (sperm whale clicks).

4.3.1 Spectrogram energy thresholding (orca calls)

This work was conducted in collaboration with Jan Schlüter and Marion Poupard,

on the OrcaLab data (see section 3.2.1).

The chosen approach to the preliminary detection of orca calls was inspired by

Lasseck [108] on spectrogram segmentation for bird call detection. We first binarise

spectrograms (see Fig. 4.3) with adaptive thresholds using rows and columns

moments. The original formulation proposed by Lasseck [108] for the threshold

Tf,t given a log compressed spectrogram E is given by Eq. 4.1. The goal being to

detect pixels with energy values above the distribution of their row and column,

we propose to rather use Eq. 4.2.
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Figure 4.3: Comparison of the spectrogram binarisation procedure following Eq. 4.1
(middle) and Eq. 4.2 (right).

Tf,t = max(3 × median
j

(Ef,j), 3 × median
i

(Ef,i)). (4.1)

Tf,t = max(median
j

(Ef,j) + 2 × std
j

(Ef,j), median
i

(Ei,t) + std
i

(Ei,t)). (4.2)

Connected positive pixels are later grouped by regions, from which we will

extract features such as minimum and maximum frequencies, length, and mean

and maximum decibels. We finally use our prior knowledge of orca calls to filter

out impossible regions (out of range features), and plot them for annotation via

thumbnail picking (see section 4.2).

4.3.2 TDOA tracking (sperm whale clicks)

This work was conducted in collaboration with Maxence Ferrari and Marion Poupard,

on the Bombyx data (see section 3.2.1).

For sperm whale clicks, time domain signal processing is more appropriate than

the spectral based energy detection presented above. In a first pre-processing

step, sperm-whale clicks are emphasised by correlating the signal with a sinus of

their centroid frequency (12.5 kHz). Then, the permissive detection mechanism

is based on the Teager-Kaiser (TK) energy operator (inspired by Kandia and

Stylianou [97]). The TDOA of the detections were then computed between the

two hydrophones of the antenna, as we will see that spatial information is quite

useful for the identification of sperm whales.
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Figure 4.4: Custom UI built in matplotlib [87] for the annotation of sperm whale clicks.
(top) TDOAs versus time of detected clicks, with vertical bars denoting gaps between
recorded files. (bottom) Spectrogram of the signal surrounding the selected click, shown
with a red dot on the top panel.

In our data the three main signals that trigger such a detector are those produced

by sperm whales, boats, and other odontoceti such as long-finned pilot whales (Globi-

cephala melas). To discriminate between these three for annotation, while browsing

the large amount of recordings, the custom UI shown in Figure 4.4 was built.

This UI shows a scatter plot of TDOA of preliminary detections versus time.

This allows for the identification of tracks revealing moving acoustic sources, with

the slope reflecting angular speed relative to the antenna. With such a plot, we

display 10 hours of signal at once, enabling a quick browse through large amounts

of data. When clicking on a point of the scatter plot, it is signaled with a red dot,

and the surrounding signal’s spectrogram is displayed on the bottom pane while

the sound is played. This allows for the identification of the source responsible for

the selected track. The user can eventually click on buttons to save an annotation
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along with its timestamp (noise, pilot whale or sperm whale).

4.4 Feature extraction and filtering

Clustering allows for a strong optimisation of the annotation process. Indeed, once

signals are grouped by similarity, browsing and sorting becomes much more efficient,

especially by avoiding to go through large amounts of void.

The key to clustering quality is the extraction of relevant features for similarity

measurement. Hereby are presented three feature extraction approaches on different

kinds of signals : humpback whale vocalisations, toothed whale clicks, and orca calls.

Once features were extracted, they were usually projected using Uniform

Manifold Approximation and Projection (UMAP) [124] before a Density Based

Spatial Clustering of Applications with Noise (DBSCAN) clustering [51]. Allaoui

et al. [3] have shown that dimensionality reduction using UMAP would improve the

performance of clustering such as density based ones. The distribution of projection

in turn motivated a density based approach to clustering such as DBSCAN (Fig. 4.6).

4.4.1 Spectro-temporal features (humpback whale calls)

This work was conducted on the Carimam dataset (see section 3.2.1).

The objective of the following procedure is to explore a large dataset with no

samples of target signals given a priori. For this purpose, a relatively generic feature

extraction was conducted before plotting and clustering their projection. Like so, we

intend to isolate groups of similar events, and allow for a more efficient exploration

of the data. Especially, the events we hope to find are click trains and cetacean

vocalisations, but we also expect to retrieve events from other noise sources.

The extracted features process spectrogram chunks in two main steps in order

to emphasis potential signals of interests (Fig. 4.5). First, to get a representation

that preserves short events (such as clicks) but with a reduced size, we max-pool

spectrograms time wise. Second, to make abstraction of the temporal information

(whether an event is at the beginning of a chunk or at its end) we sort each

frequency bin (time wise) in descending order.
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Figure 4.5: Main steps of the spectral feature extraction procedure. The spectrogram
is first max-pooled time-wise by a given factor. Then, each frequency bin is sorted
(time-wise) to make abstraction of the temporal position of events.

Doing so, the resulting matrix is no longer a spectrogram, but rather a repre-

sentation of the energy distribution for each frequency bin. This allows to select

specific columns as discriminating features, the first denoting the highest energy in

the chunk for each frequency bin, and the last their lowest. For instance, looking

for short events, we can select the first and second columns. Chunks with a large

gap between the two should contain a short but strong acoustic event. It could

thus be differentiated from chunks with stationary strong energy and chunks with

a low overall energy, and this for specific frequency bins. For simplicity, this set

of columns to be kept will be referred to as ‘quantiles’. The full procedure for

this analysis is described in Listing 4.1.

Listing 4.1: Feature extraction and clustering for humpback whale vocalisations. Steps
are operated over a batch of signals on GPU for computation speed.
from torchaudio.functional import resample
import torch
from sklearn.cluster import DBSCAN
from umap import UMAP
gpu = torch.device(’cuda’)

# load a batch of signals using pyTorch DataLoader
sigs = ...
sigs = sigs.to(gpu)
sigs = resample(sigs, source_fs, fmax ∗ 2)
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# compute the magnitude spectrogram using the STFT
specs = torch.stft(sigs, n_fft=1024, hop_length=512)
specs = 20 ∗ torch.log10(specs.norm(p=2, dim=−1))
# substract a background noise estimate
specs = specs − specs.median(dim=1, keepdim=True)[0]
# apply the mel−transform
spec = torch.matmul(melbank, specs)
# undersample the spectrogram over the time dimension
specs = torch.nn.MaxPool1d((uds,))(specs)
# rearange the tensor into a list of time chunks
specs = specs.permute(1, 0, 2)
specs = specs.reshape(specs.shape[0], −1, chunksize)
specs = specs.permute(1, 0, 2)
# sort frequency bins and select quantiles
features = torch.sort(specs, dim=2, descending=True)[0]
features = features[:,:,quantiles].numpy()
# project and cluster each time chunk
features = features.reshape((specs.shape[0], −1))
embeddings = UMAP().fit_transform(features)
clusters = DBSCAN().fit_predict(embeddings)

The variables fmax, uds, and chunksize need to be tuned to the type of signals

we desire to isolate, especially in terms of spectrum range and spectrogram temporal

resolution. fmax determines fs at which the signal is resampled, uds determines

the downsampling factor used for max-pooling, and chunksize determines the

sampling rate of the feature extraction process. As for the humpback whales, they

were set to 8,000 Hz, 14 and 20 respectively (chunks of 10 sec with 20 time bins).

Then, the first seconds and fifth quantiles were chosen.

These choices were made via intuition and empiric testing. Once annotations

were gathered, experiments were carried out to measure which configuration would

have been the most efficient.

Trials with varying values for the size of chunks and the choice of quantiles

were conducted, using the NMI between clusters and annotations as a metric of

configuration quality. The choice of configuration appeared to have a relatively

small impact on the resulting NMI, with values ranging between 0.15 and 0.18

(the random baseline being under 0.01). The highest scoring configuration was

to cut chunks of size 10 with only the first quantile.
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Figure 4.6: Interface for browsing clusters. The left panel displays clustered UMAP
projections of audio chunks spectral features, with red dots signaling points that have
been clicked on. The right panel displays the spectrogram of the last selected audio as
well as its metadata.

Once features have been extracted for a large amount of samples, we reduce their

dimensionality (using UMAP), and cluster them (using DBSCAN). A custom made

interface then enables a seamless browsing of this clustered projection (see Fig. 4.6).

Users can select an audio chunk by clicking on its projection on the scatter

plot. The interface will then play the corresponding sound extract and display

its spectrogram on a secondary window. This allows for the identification of

discriminant clusters to be retained (containing only vocalisations, or only noise for

instance). Eventually, we can plot samples belonging to selected clusters as .png

files and use thumbnail picking (see section 4.2) to sort out misclassified samples.

4.4.2 Impulses’ features (toothed whale clicks)

This work was strongly inspired by Frasier [67], conducted in collaboration with

Maxence Ferrari and Marion Poupard, on the Carimam data (see section 3.2.1).

In a similar approach, we might want to cluster clicks for their spectral features

to infer ICI characteristics, which helps discriminate toothed whales click trains

from reef noise. To do so, using the STFT as seen in the previous section is not

appropriate. We would rather use a generic impulse detection mechanisms on the

waveform, and extract their features. I thus propose the following steps :
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• Generic impulse detection:

– high pass the signal x(t) at 5 kHz,

– compute the Hilbert transform H(t) of x(t),

– compute a running average a(t) to smooth H(t),

– convert a(t) into decibels with 20 × log10(a(t)),

– compute the median and std of a(t),

– find peaks of 20× log10(x(t)) that are 3dB above the noise level expressed

as median +3 × std,

– retain peaks with widths between 0.008 and 1.2ms, and retain its highest

sample.

• Feature extraction:

– compute the FFT of a 1ms window surrounding the detected impulse,

– compute the 3 dB centroid frequency,

– cluster impulses by their centroid frequency,

– compute ICIs as the time difference between impulses of the cluster,

– fit a gaussian Kernel Density Estimate (KDE) on the ICI distribution of

the cluster,

– estimate the peak of the KDE,

– for each cluster, save the peak of the KDE (most frequent ICI), its width

(ICI variability), and the mean 3dB centroid frequency.

The user can eventually filter data on the KDE peaks height and width depending

on the desired specificity. An interface then displays a scatter plot of ICIs vs

centroid frequencies (Fig. 4.7). Again, a click on a point triggers a spectrogram

display of the corresponding signal, which can be further analysed and eventually

saved for annotation.

This method was used to explore the data in view
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Figure 4.7: Interface for browsing cluster of clicks. The left panel displays the mean ICI
vs 3dB centroid frequency for each cluster of impulses. Red dots signal the selected cluster
of clicks. The right panel displays the spectrogram of audio surrounding the selected
cluster as well as its meta data.

4.4.3 AE embeddings (orca calls)

This work was conducted on the OrcaLab data (see section 3.2.1), and has been

subject to a workshop intervention [19].

For this section, we are interested in the classification of pre-detected orca calls

(dataset of 114k orca calls detected by a CNN presented in section 5.3.1). Call types,

as defined by Ford [65] for NRKWs, are determined by their temporal pitch patterns.

First experiments were thus conducted using a pitch based feature extraction to

cluster calls [152]. However, the estimation of the pitch appeared to be quite

unreliable in low and medium SNR conditions (see section 2.2.1). This led to a

switch towards a larger scale extraction of shape (as opposed to local pitch estimates).

Auto-encoders (introduced in section 2.1.4) are trained to compress data in a

lower dimensional embedding space while being able to reconstruct it. Moreover,

since the reconstruction relies on learning structure in the data, the noise in the

input (random and unstructured) is omitted in the output. This motivates the

use of AEs for the feature extraction of orca calls, expecting the bottleneck to

contain the shape of the call in a low dimensional space.

The training framework of the AE was designed as follows (see Fig. 4.9):
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Figure 4.8: Architecture of the encoder part of the AE. (Bottom) shapes of volumes as
(depth × height × width). (Top) Operations and kernel shapes as (heightxwidth).

• Compute Mel-spectrogram on windows of 2sec around detections (fs = 22050,

NFFT = 1024, hop = 330, #Melbands = 128, fmin = 300, fmax = 11, 025),

• Run the encoder to compress the 128x128 image to 16 dimensions (Fig. 4.8).

Each convolution is followed by batch normalisation and leaky rectifier linear

units. The resolution is lowered via strides of 2 for each convolution, and a

max-pooling layer,

• Run the decoder as the mirror of the encoder. The first 16x4x2 volume is

created via a linear layer, and each resolution increase consists in upsampling

by nearest value followed by two convolution layers of kernels 3x3,

• Compute the VGG embedding of the input and the reconstructed images as

the activations after the 6th convolutionnal layer,

• Use the MSE between the two VGG embeddings as the loss

(L = Σ∥VGG(E) − VGG(Ê)∥2).

The VGG mentioned, used for the perceptual loss [95], is a VGG16 pretrained

on the ImageNet dataset [43].

The size of the bottleneck was empirically chosen as the minimum that still

enables satisfactory reconstructions. Fig. 4.10 demonstrates how, in reconstructions,

details of some calls are omitted, and background noise becomes patterned. Indeed,

due to the limited amount of information that the bottleneck can fit, the decoder is

forced to learn common data structures to reconstruct the data. This is actually
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Figure 4.9: Architecture of the training framework for the AE of orca calls using a
perceptual loss [95].

beneficiary for our end goal of grouping roughly similar shapes together, and it

explains why random background noise, transient clicks, and small variations in

call shapes are not found in output spectrograms.

The bottleneck embeddings were later used as features for DBSCAN clustering

(after UMAP dimensionality reduction [124]). This enabled a drastic reduction

of the annotation effort by grouping similar calls together. Thumbnail picking

(see Fig. 4.2) was then conducted to verify clusters and associate them with the

orca call types defined by Ford [65].

4.5 Active learning

Active learning is the process of iteratively training and annotating to improve

a database (qualitatively and/or quantitatively). It is relevant when one has a

training database that is not large enough to ensure satisfactory performances.

By correcting the model’s predictions at each iteration, we emphasis on difficult

examples and guide it towards robustness.

This active learning process was conducted via thumbnail picking to gather

annotations for fin whale pulses, dolphin whistles, humpback whale vocalisations,

and orca calls.
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Figure 4.10: Comparison of input and AE reconstructed spectrograms.
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4.5.1 Transfer learning (fin whale pulses, dolphin whistles)

Pre-training a model on a database before fine tuning on a different one is called

transfer learning. Similar approaches were used to kick-start the active learning

process on two detection tasks, as described in the following paragraphs.

Fin whale pulses

To gather a database of fin whale 20 Hz pulses from the recordings of Bombyx

and Boussole (see section 3.2.1), several handcrafted algorithms were first tested

(looking for strong energy peaks in realistic time and frequency ranges). Without

any exemplary signal to tune them, and with the wide variety of noises present on

both banks of recordings, this approach failed to yield any fin whale signals.

We were lucky to eventually get some help from M. Giani Pavan, who shared

some of his recordings of Mediterranean fin whale songs containing 100 pulses

[146]. Despite the limited amount of samples, training a small neural network

(see section 5.2.1) on this data allowed to find similar signals on the Bombyx and

Boussole datasets (see section 3.2.1). This demonstrates the capacity of small neural

networks to generalise to different recorders even with very few training samples.

Active learning with thumbnail picking further helped increase the database

to a satisfactory size (see Tab. 4.1).

Dolphin whistles

This work has been conducted in collaboration with Marion Poupard.

For this task, as for the fin whale pulses, we used other sources of data available at the

lab as a starting point to the active learning process. This time though, the variability

of the signals to be detected prevented the use of a low complexity architecture.

Thus, to enforce the generalisation of the model to other recording systems,

the available data was augmented with negative samples from the target recording

system (Carimam). By mixing annotated foreign inputs with negative samples from

Carimam, we teach the model to be robust to common Carimam perturbations

(self noise from the sound card, reef noise), while training on positive samples
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of the target signal. This ‘mixing’ takes form as a simple summation of the

waveforms after their standardisation.

Active learning with thumbnail picking further helped increase the database

to a satisfactory size (see Tab. 4.1).

4.6 Resulting annotations and train / test splits

The methods proposed in this section yielded enough annotations to train ANN

models on each detection / classification tasks (Tab. 4.1).

Target signal Positives Negatives Total
Sperm whale clicks 42% 58% 5,554
Fin whale 20 Hz pulses 14% 86% 5,790
Orca calls 78% 22% 6,004
Humpback whale calls 42% 58% 1,377
Dolphin whistles 12% 88% 1,595

Table 4.1: Summary of the annotations gathered on the data at hand for detection task.

The performance measurement methods employed need to reflect our end goal,

namely training robust detections models. Robustness, can be defined as the

capacity to ignore perturbations, some kind of resilience. In our case, perturbations

are sound events and background noises, especially those not seen in training.

To measure robustness, our test data must thus contain new acoustic content,

somewhat different from training.

The randomly sampled train / test splits often seen in the machine learning

community is insufficient in that sense. Indeed, train and test samples will be

extracted from the same vocalisation / noise sequences, thus sharing most of their

characteristics. On the other hand, choosing a specific source of data, or if not

available a distinct time period, should yield novelty in the test set, and give

relevant robustness measures for our models.

Fin whale pulses

The gathered annotated database of fin whale 20 Hz pulses offers three different

data sources (Table 4.2). Thus, in the experiments, three folds were used : each
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using two sources for training and the remaining one for testing. The Magnaghi

data corresponds to the extracts provided by G. Pavan (see 4.5.1).

Data Source Positives Negatives Total
Magnaghi 15% 85% 688
Boussole 9% 91% 4,528
Bombyx 49% 51% 574
Total 14% 86% 5,790

Table 4.2: Distribution of annotations of 20 Hz fin whale pulses. Each source of data
was used as test set in a 3 fold manner.

Sperm whale clicks

The annotated database of sperm whale clicks coming from only one source of data

(Bombyx), The year 2017 was chosen for testing and the remaining for training

(Table 4.3). This choice is motivated by the fact that 2015 has too few samples for

the test to be relevant, 2016 has a positive / negative distribution too different than

the global dataset, and 2018 has the largest amount of samples which is desirable

for training. To improve the annotation comes from separate files.

Experiments showed that the model would tend to lack sensitivity, with the

exception of pilot whale samples which would trigger a low specificity. To tackle this

issue, and accounting for the imbalance in the data (Tab. 4.3), sperm whale and pilot

whale samples were over-sampled during training, by a factor 3 and 10 respectively.

Recording year Sperm whale Boat / Noise Pilot whale Total
2015 48% 52% 256
2016 75% 23% 2% 1,383
2017 32% 67% 1% 1,363
2018 28% 68% 4% 2,552

Total 42% 55% 3% 5,554

Table 4.3: Distribution of annotations for the sperm whale click detection task. The
year 2017 was used as test set.

Humpback whale calls

For the detection of humpback whale calls, the data recorded from Sint Eustatius

island was selected as the test set (Table 4.4). The Sint Eustatius antenna was
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chosen for the test set as it has a representative distribution of classes and is

neither too small nor too big (∼ 10%).

Station Positives Negatives Total
Anguilla 100 0 100
Bahamas 0 45 45
Bermude 276 27 303
Guadeloupe 666 26 692
Jamaica 0 11 11
Martinique 354 37 391
Saint Barthélémy 173 0 173
Sint Eustatius 204 103 307
Saint Martin 163 242 405
Total 67% 33% 2,427

Table 4.4: Distribution of humpback whale calls annotations through the Carimam
recording stations. The Sint Eustatius data source was used as a test set.

Dolphin whistles

For the detection of dolphin whistles, the data recorded from Guadeloupe Breach

was selected as test set (Table 4.5).

Station Positives Negatives Total
Guadeloupe Breach 36 354 390
Gualdeloupe Anse Bertrand 0 49 49
Saint Barthélémy 0 16 16
Sint Eustatius 37 111 148
Saint Martin 0 34 34
Jamaica 24 10 34
Bonaire 74 25 99
Bermude 25 439 464
Bahamas 0 16 16
Anguilla 0 345 345
Total 12% 88% 1,595

Table 4.5: Distribution of dolphin whistles annotations through the Carimam recording
stations. The Guadeloupe Breach data source was used as test set.

Orca call detection

A special recording session was run at OrcaLab in 2019 by Poupard et al. [154], for

the study of group dynamics via triangulation. The manual annotations gathered
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for this experiment were used in this thesis, bringing an opportunity to measure

the impact of a change in recording hardware on detection mechanisms with no

additional annotation effort. Two test sets were thus used for the orca call detection

task, one from the same antenna than in training but in a different year and one

from a different antenna (see Tab. 4.6). A preliminary study using this dataset

was published in a conference paper [17].

Recorder Year Positives Negatives Total
OrcaLab network 2015 - 2017 846 3,777 4,623
OrcaLab network 2019 111 177 288

Poupard et al. [154] 2019 368 725 1,093

Table 4.6: Distribution of orca calls binary annotations. The data from 2019 (two
different antennas) was used as test set.

Orca call classification

Given the diversity of classes and the singular recording source, for the orca call

classification task, the train / test split was simply done by sorting by date and

choosing a proportion for test and the rest for train. For instance, the first 10% of

each class were taken for test, and the remaining 90% were used to train the model.

call type instances
N1 854
N2 191
N3 192
N4 1213
N5 209
N9 609
N23 469
other 109
Noise 814

Table 4.7: Distribution of annotations of orca call types [65]. The ‘other’ class corresponds
to infrequent calls that did not have enough occurrences to form an independent class.

Antarctic blue and fin whale calls

Table 4.8 summarises the distribution of labels for each data source available in the

Acoustic Trends dataset [128]. The Kerguelen 2005 data source was chosen as a test
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Figure 4.11: Examples of each class of orca call types annotated using clusters of AE
embeddings. The terminology as defined by Ford [65] has been used by associating calls
with their closest class in the catalogue.
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set. Its specific recording system and location, as well as its sufficient support of all

classes motivated this choice. The remaining recordings were used for training.

4.7 Discussion

As seen throughout this chapter, techniques employed in pre-detection, feature

extraction and filtering need to be adapted to the type of target signal and the

available recordings. For that matter, Tab. 4.9 recapitulates the choices made for

each of the 6 annotation procedures conducted.

Let us get an idea of the time it would have taken to annotate the sperm whale

click database via random sampling for instance. Sperm whales were confirmed

on 6% of the files from Bombyx (see section 6.3.1). If we consider 30 seconds to

manually check a file (between 1 and 5 minutes long), to yield the 2,300 positive

labels collected here (they are each on separate files), one would need 320 hours.

It took approximately 40 hours in total collect this database with the annotation

approach described in 4.3.2.

The following paragraphs summarise the advantages of some methods employed

through these experiments, along with potential pitfalls to be kept in mind.

4.7.1 Active learning

Active learning has proven to be very efficient in iteratively increasing database sizes.

It can be started as soon as few dozen annotations are at hand. Indeed, in that

case, rather than spending time in tuning pre-detection mechanisms to collect more

samples, deep learning models help to collect occurrences of the target signal as

well as disruptors (e.g. boats, signals from other species). Moreover, it is worth the

efforts of developing the training procedures since they will be used subsequently,

as opposed to the pre-detection algorithms which are rather a one time usage.

Nonetheless, there is a danger that comes along with active learning: the

progressive specialisation of the model to detect only one type of signal. Indeed, if

the initial annotations omit some type of signals from a target species, it is likely

that the model will never learn to detect them. This especially comes from the
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Target signal Pre-detection Feature extraction Filtering
sperm whale clicks TK filter TDOA custom UI

humpback whale calls NA spectral features custom UI and clustering
orca call detection spectrogram thresholding region statistics hand-crafted rules

orca call classification CNN auto-encoder clustering
20 Hz fin whale pulses transfer learning

dolphin whistles transfer learning

Table 4.9: Summary of steps employed in the initial annotation process of each target
signal.

fact that we often only correct the positive predictions of the model, sorting out

false positives (negative predictions usually come in much larger numbers, making

it fastidious to find false negatives). To mitigate this effect, one can manually

browse recordings around detections and annotate full sequences, or look for false

negatives in low confidence negative predictions.

4.7.2 Thumbnail picking

Thumbnail picking allows to quickly validate detections or clusters to collect

annotations. The only condition is to find a visualisation that fits a small size and

still allows to make a decision on sample’s classes (small spectrograms work well

for most stationary signals, see Fig. 4.2). It is versatile and easily shareable to

experts (the only prerequisite is to have a graphical file manager). It is fast and

user friendly: you just need to click on files to select them and move them to a

separate folder (cut and paste). Also, seeing multiple samples at once strongly

helps the eye in discriminating singularities.

This last advantage can also be dangerous in the annotation process. Indeed,

when sorting large folders to try and keep only a class of call, one might always see

similar calls at a time on the screen, but through scrolling, pitch contour shapes

might shift progressively. When this occurs, the annotator might feel like all the

calls in the folder are similar, when in fact, the ones at the beginning are very

different from the ones at the end. To mitigate this, indexes should be randomly

permuted, since this progressive shift in call contour is likely to occur if files are

sorted time wise, but very unlikely otherwise.
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4.7.3 ‘Generic’ spectral features extraction

Section 4.4.1 proposes a procedure suited to explore large banks of recordings by

grouping events with similar content in terms of frequency energy distribution. It

allowed to collect a first database of humpback whale calls. The success of such

approach relies on several assumptions:

• A minimal knowledge of the target signals is needed to configure the algorithm

(e.g. frequency range, length).

• Events are grouped independently of the temporal distribution of the energy

in the spectrogram (e.g. upwards and downwards chirps will yield the same

features). This is suited to discriminate between events of different temporal

support, but would not work to discriminate some pitch patterns.

• For the projection and the clustering to reveal a group of events, a sufficient

number of instances are needed. This is the most probable explanation of

why we failed to retrieve dolphin whistles and click trains using this method.
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5.1 Context and objective

The gathered annotations previously mentioned represent an important step towards

the objective of this thesis: building robust detection and classification mechanisms

for several target signals. For that purpose this chapter discusses ANN training in a

supervised learning context. The detection of sperm whale clicks and fin whale 20 Hz

pulses is first experimented with a constraint on computational cost (in order to be

95
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embedded in a sono-buoy, see section 6.2) . For that matter, the effect of several

complexity reduction approaches is studied. Then, heavier models are used to detect

Antarctic mysticetes and orca calls. Experiments focus on the effect of network

frontends, architectures and hyper-parameters on performances. Furthermore, given

orca call detections, trials with deep metric learning and semi-supervised learning

are reported for the call type classification task.

5.2 Light weight detectors

The initial funding of this PhD was oriented towards the implementation of a real

time alert system for the presence of large cetaceans in the Ligurian (Mediterranean)

sea (GIAS Project). This system takes form as a battery powered sono-buoy with

acoustic and processing capacities.

Motivated by the objective of deploying detection mechanisms into this embedded

systems with low computing capacity, several complexity reduction approaches have

been experimented with. Some measures will be given according to the specific

embedded Microcontroller Unit (MCU) of the buoy: the PIC32 by MicroChip.

Two large cetacean species evolve in the Ligurian sea, and therefore are to be

detected by the system: sperm whales and fin whales. Two target signals are thus

concerned by the following experiments on low computational detection: sperm

whale clicks and fin whale 20 Hz pulses.

This section first reports on experiments with three complexity reduction

approaches (depth-wise convolution, weight pruning and weight quantisation),

comparing their computational needs and performance. Then, with the chosen

approach of depth-wise convolution, we investigate on optimal number of features

per layer and kernel sizes via a grid search. Finally, the two selected detection

mechanisms are compared with baseline algorithms of the literature.

5.2.1 Complexity reduction

The base architecture for the following experiments is a 3 layer network of 1D

convolutions. It takes 64 bins Mel-spectrograms as an input :



5. Training detection and classification mechanisms 97

• Sperm whale clicks: fs = 50 kHz, NFFT = 512, hop = 256, fmin = 2 kHz,

fmax = 25 kHz

• Fin whale 20 Hz pulses: fs = 200 Hz, NFFT = 256, hop = 32, fmin = 0 Hz,

fmax = 100 Hz

Following Schlüter [169], the spectrograms are compressed with log(1 + S × 10a)

with a a trainable parameter.

The frequency bins (spectrogram rows) are considered as input channels for

the first 1D convolution. This choice was motivated by the fact that large spectral

shifts are not expected for these target signals. Convolving frequency-wise is

thus inappropriate. Using 1D convolution also significantly reduces training and

inference time.

The following experiments make use of the annotated databases described

in section 4.6.

Depth-wise layers

As demonstrated in section 2.1.3, using depth-wise separable convolutions is an

efficient way of reducing the amount of multiplications needed in neural network

systems. Fig. 5.1 compares the number of multiplications needed for an inference

with regular convolution networks and depth-wise separable networks. The lower

bound complexities are of O(n2) and O(n) respectively (with n the number of

features per layer).

Weight pruning

In ANNs, weight pruning consists in putting to 0 a proportion of weights after

training [110] (e.g. the ones with the smallest L1 norm). The idea is to avoid

computing multiplications for weights that are of low impact for the end prediction.

Experiments were conducted to measure the effect of pruning as compared to

reducing the number of features per layer before training (see Fig. 5.2).

For the model with 32 features per layer, pruning until 20% included had a

non-significant effect. As for the larger models, performances were impacted starting
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Figure 5.1: Number of multiplications needed per forward pass against the number of
features per layer, for two types of architecture (solid lines). The number of multiplications
were estimated for a 3 1D convolutions architecture (64 channeled input and single
channeled output), stride of 1, and a kernel of size 4. Estimated inference time on the
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Figure 5.2: AUC performance on the sperm whale click detection task before and after
pruning. Models consisted in 3 depth-wise layers with varying numbers of features (each
randomly initialised 5 times). Green boxes denote the performance of models before
pruning, with 16, 32, 64, and 128 features per layer. For each of them, pruning was
applied over 10%, 20%, 30%, and 40% of the weights, whose performances are shown in
white boxes.
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Figure 5.3: Performance for sperm whale clicks detection, before and after quantisation
to 8 bits integers. 3 layer regular convolution architecture were trained 5 times for each
configurations. AUC are given for the test set (see section 4.6)

from 20% of pruning. Pruning can therefore be considered a relevant option to

reduce the complexity of CNN detection systems, but can only offer a marginal

gain (between 10 and 20% of multiplications can be avoided).

Weight quantisation

The type of variable in a multiplication has an important impact on the cost of the

operation. For instance, on the target MCU of the GIAS project (see section 6.2),

the PIC32 from Microchip, a multiplication of two floating point variables takes

736 ns while multiplying two 8 bit integers takes 48 ns [30] (a factor 16 of difference).

Fig. 5.1 compares inference times on the PIC32 for a depth-wise architecture of

floating points against a regular convolutional architecture of 8 bit integers.

Weights were thus quantised to 8 bit integer variables in an attempt to reduce

computation time. To do so, using the Pytorch [145] quantisation module, inputs

weights and activations are quantised after training regularly with floating point num-

bers (post-training quantisation). Nonetheless, inference on a subset of the dataset is

conducted to calibrate the quantisation parameters for the activations and mitigate

information degradation. This quantisation approach was experimented on 3 layer

architectures with regular convolution and varying number of features (Fig. 5.3).
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The quantisation procedure appeared to have a non-significant impact on

performance (the Kruskal-Wallis H test between the two distributions gave p-

values > 0.1). Quantisation can thus be a relevant approach to the complexity

reduction of models.

Conclusion

The depth-wise approach shows a significant complexity reduction, even with

floating point weights numbers, and this until 16 features per layer (Fig. 5.1). At

128 features per layer (the chosen configuration for fin whale 20 Hz pulse detection),

such architecture yields an inference 50 times faster than a regular convolutional

one, and 5 times faster than its quantised version. Depth-wise convolutions has

thus been retained for the detection systems of sperm whale clicks and fin whale

pulses, the two target species of the GIAS project (section 6.2).

Implementing quantised and pruned depth-wise architectures would have been

possible, but appeared to be demanding in development efforts. Moreover, as section

6.2 shows, the main cost of the buoy embedded analysis lies in the spectrogram

computation rather than in the model inference (given the already reduced complex-

ity of the CNN). Accounting for this, no further efforts were put into researching

complexity reduction for these detection systems.

5.2.2 Hyper-parameter search

With the chosen 3 layer depth-wise architecture, experiments were conducted to

select the optimal kernel sizes and number of features per layer. These small neural

networks being quite fast to train (less than 5 seconds per epoch using the GPU), a

simple exhaustive search is possible. They are summarised in Fig. 5.4 and Fig. 5.5.

Networks were trained with batch normalisation, dropout (p = 0.25) and leaky

rectifier units after the two first convolution layers. Learning rate and weight decay

were manually tuned before training with varying numbers of features and kernel

sizes. Kernel size and number of feature per layer were chosen to study as they

were found to have the largest impact on computation cost and performances.



5. Training detection and classification mechanisms 101

4 5 6 7
kernel size for 32 feats

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
AU

C

4 5 6 7
kernel size for 64 feats

4 5 6 7
kernel size for 128 feats

4 5 6 7
kernel size for 256 feats

Magnaghi
Bombyx
Boussole

Figure 5.4: AUC performance for the 20 Hz fin whale pulse detection task. Depth-wise
architectures have been experimented with several combinations of hyper-parameters
(number of features per layer and kernel size). For each configuration and train/test fold,
5 runs were conducted. Folds are labelled with their test set (Bombyx scores report the
performance of models trained on Magnaghi and Boussole data.

On the fin whale 20 Hz pulse detection task, the Magnaghi test set showed a great

variability to multiple network initialisation, even with the same hyper-parameters.

This is perhaps a consequence of specific recording setup properties, or a large gap

between convergence points accounting to the two different training sources. On the

two remaining folds however, performance is relatively resilient to hyper-parameter

choice and initialisation. Performances of 0.99 AUC seem satisfactory for the test set.

As for the sperm whale click detection, larger kernels and deeper layers (number of

features) appeared to induce some overfitting. For some configurations however, the

depth-wise architectures, despite a lower amount of parameters, yield performances

similar to those of regular CNNs (Fig. 5.3).

For the following experiments, the architecture with kernels of size 5 and 32

features per layer was retained for the sperm whale click detection, and kernels of

size 5 with 128 features per layer was retained for 20 Hz fin whale pulse detection.
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Figure 5.5: AUC performances for the sperm whale clicks detection task. Depth-wise
architectures were experimented with several combinations of hyper-parameters (number
of features per layer and kernel size). For each configuration and train/test fold, 5 runs
were conducted.

5.2.3 Baseline comparison

The performances reported in the last section only have value relatively to that

of previous systems (baselines). This section first reports on a common technique

used in sperm whale click detection: the TK filter. Then, two experiments were

conducted to validate the 20 Hz fin whale pulse detection procedure: comparison to

a commonly used template matching method and comparison to a state-of-the-art

ANN based system on an unseen dataset.

TK filter (sperm whale clicks)

The chosen baseline for the sperm whale click detection is inspired from the work

of Ferrari [55]. It makes use of the TK energy operator to find impulses, before

filtering them by an estimation of the background noise with a rolling median.

This algorithm was used on the whole dataset of sperm whale clicks for

comparison with ANN performances. Using the maximum energy value of samples

as prediction, the AUC score was of 0.86, around 0.07 points below most of the

trained depth-wise models (Fig. 5.6). This translates to, for instance if we fix
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Figure 5.6: ROC curves for the sperm whale click detection task. Performances are
given for the TK filter (baseline) and for the 5 initialisations of the 3 layer depth-wise
architecture (median ± standard deviation).

a 10% fall-out (false positive rate), a precision of 62% for the TK filter, against

82% in average for the depth-wise models.

Different base for spectrogram computation

Through numerous research, the scientific community has looked for alternatives to

the Fourier transform as feature extraction before the main neural network. The

sinus base the FFT offers seems too generic, not suited for particular signals such as

the transient sperm whale clicks. Experiments were thus conducted using the sincnet

frontend proposed by Ravanelli and Bengio [157] which is based on cardinal sinuses

with trainable cut frequency. Performances never exceeded 0.86 of AUC on the sperm

whale click database (6 points below average performances of FFT based models).

Template matching (20 Hz fin whale pulses)

As mentioned in section 2.2.1, spectrogram correlation is a common approach for

cetacean signals detection, especially for mysticetes. To compare our ANN system

with this baseline, we built a template of fin whale 20 Hz pulse by averaging the

Mel-spectrogram of all annotated pulses in the training set. We then threshold on
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the cross-correlation product of samples with the template. The resulting detection

performances are presented in Figure 5.7. The AUC of the template matching

method is 0.898 (5 to 10 points less than the CNN model, depending on the fold).

Larger ANN architecture (20 Hz fin whale pulses)

The dataset published by Madhusudhana et al. [120] which also studies a CNN

based fin whale 20 Hz pulse detection seems relevant to test this thesis’ proposed

system on foreign data. The resulting mAP and peak F1-score are 0.96 and 0.88,

when the best overall performances of the study are 0.95 and 0.91 respectively

(note that the dataset published is only a subsample of the dataset used in the

study, and thus scores are not reliably comparable). This demonstrates that the

proposed model generalises well to new data, with scores comparable to a larger

architecture that exploits the sequentiality of the pulses.
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Figure 5.7: ROC curves for fin whale 20 Hz pulse detection over each test set (the two
remaining sources serving as training set, see section 4.6 for details). Performances of the
template matching method and over the dataset published by Madhusudhana et al. [120]
are also displayed.

Conclusion

To challenge this thesis’ choice of architecture, handcrafted algorithms, a different

frontend, and tests on foreign data were implemented. All results comfort the
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fact that the FFT based depth-wise architectures are successful at the task, and

that with a relatively low computational cost, they show better performances

than handcrafted algorithms.

5.3 Deeper and wider models

The remaining target signals treated in this thesis present more variability than

sperm whale clicks and fin whale 20 Hz pulses. Larger architectures than simple 3

depth-wise convolutions were thus experimented. We followed the community by

opting for the ResNet architecture, widely used in image and sound classification

tasks, and the most used for bioacoustics applications [186].

Note that when using ResNet architectures, the last layers consist of an average

pooling of the spatial dimensions, followed by a fully connected layer (with the

number of output channels set to the number of target classes). In bioacoustic

applications, it is often more convenient to yield a sequence of predictions through

time rather than one prediction regardless of the size of the input spectrogram.

To retrieve this behaviour while conserving the main ResNet architecture, one

can discard the average pooling and replace the fully connected layer by a 1x1

convolutional layer (kernel of size 1).

During training, the sequence of predictions can be max-pooled before the loss

computation. Max pooling is more suited than average pooling for detection (or

multi-label classification) tasks since we want the prediction to be invariant to the

amount of void surrounding a target signal. In other words, whether there is one

or 10 calls in the input, the detection should be the same: it denotes the presence

of at least one event in the window. Note that when using a max-pooling layer,

during back-propagation, only the temporal frame with the maximal prediction

serve the gradient computation.

In this section, experiments study the effect of the choice of frontend (especially

spectrogram range compression), architecture (among ResNet-18, ResNet-50 and

sparrow [77]), training hyper-parameters and evaluation metric. In these regards,
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it intends to assist decision making, by discussing on their impact to solve two

detection tasks (orca calls and Antarctic mysticetes calls).

5.3.1 Hyper-parameter search for orca call detection

Contrary to the smaller architectures aforementioned, heavier models need around

1min per epoch on the orca call detection dataset (see section 4.6). An automatic

hyper-parameter search was thus employed using Async Successive Halving Al-

gorithm (ASHA) [113], implemented by the Ray python package [131]. It uses

the hyperband algorithm with successive halving to explore the hyper-parameter

search space, with aggressive early stopping of low performing models. Moreover,

to optimise computations, models with plateauing performance are also stopped

rather than trained until the maximum number of epochs is reached.

Hyper-parameter combinations are drawn from the following search space:

• Learning rate (log uniform distribution between 0.00001 and 0.1)

• Weight decay L2 loss (log uniform distribution between 0.00001 and 0.1)

• Batch size (sampled uniformly from [8, 16, 32, 64, 128])

• Weighting of positive samples in the loss computation (uniform distribution

of integers between 1 and 5)

• Brown noise data augmentation (boolean)

• MixUp data augmentation (boolean)

• SpecAugm [143] spectral data augmentation (boolean)

– maximum frequency dilation for SpecAugm (uniform distribution between

1% and 30%)

– maximum temporal dilation for SpecAugm (uniform distribution between

1% and 30%)

– maximum mask height (number of frequency bins) for SpecAugm (uni-

form distribution between 10 and 50)
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– maximum mask width (number of time bins) for SpecAugm (uniform

distribution between 10 and 50)

Several architectures are studied: sparrow [77] (simple VGG-like model) and

ResNet-18 models (one randomly initialised and one pretrained on ImageNet

noted ‘resnetPT’). For each of the 3 possible architectures, logarithmic and PCEN

spectrogram range compression were tested, yielding 6 independent hyper-parameter

searches. The searches were ran independently in order to have a fair comparison of

the 6 types of models: each have their hyper-parameters optimised via a systematic

procedure with a fixed computational budget.

The main objective of this study is to compare architectures on their best

possible performance on the test set (both same antenna and different antenna).

This is why no validation set was kept apart, and the whole test set mAP was used

for early stopping (both low performing and plateauing trainings), and making

halving decisions.

Nonetheless, in the following, scores of the two sets are reported separately.

Indeed, we will see that a change in recording system (with a different frequency

response) can introduce a performance drop. To emphasis on this generalisation

problem, we report performance separately on a close test set (same antenna than

seen in training) and a foreign test set (different antenna).

The search algorithm was run with 100 trials, for all architectures and range

compression combinations independently. This allows for a fair comparison of the

architectures, each having their hyper-parameters optimised in a systematic way.

Figure 5.8 summarises the resulting performance of the 100 trials for the two

test sets. The sparrow architecture appears more resilient to the choice of hyper-

parameters, especially with the PCEN range compression. The pcen-sparrow models

reach the best scores, with an especially strong performance gain on the foreign test

set (different antenna), demonstrating generalisation capabilities. These findings

will be further studied in section 5.3.1, with repeated initialisation with the best

set of hyper-parameter for each of the architectures.
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Figure 5.8: Test mAP for the two test sets of orca call detection. Scores of the 50 best
trials os the ASHA search are given for each combination of architecture and spectrogram
range compression.

Impact of hyper-parameters on model performances

To learn insights from this systematic search, correlations were measured between

hyper-parameters and the resulting model performances.

archi posweight batchsize lr augm mixup brownnoise
logMel - resnet -0.240 False 0.37

logMel - resnetPT False 0.06
logMel - sparrow -0.216 0.371 False 0.25 True 0.16

pcen - resnet False 0.06 False 0.08
pcen - resnetPT False 0.10
pcen - sparrow 0.312

Table 5.1: Statistical analysis of the impact of hyper-parameters on model performances
(test mAP). For numeric variables (posweight, batchsize, and lr), the Pearson correlation
was computed, and its coefficient is reported for p-values < 0.05. For boolean variables
(augm, mixup, brownnoise), the Kruskal-Wallis H-test was computed, and the beneficial
value along with medians difference are reported for p-values < 0.05. Empty slots denote
p-values below 0.05.

Table 5.1 reports the statistically significant hyper-parameters on the end model

performances (p-value < 0.05). Hyper-parameters appeared to have identical impacts

on the same antenna and different antenna test sets, and thus the analysis was

conducted on the combination of the two. This representation yields several insights:

• Smaller batch sizes can improve generalisation. This is consistent with the

study by Kandel and Castelli [96]. It is especially relevant for small datasets,
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where large batch sizes imply a reduced variability of batch compositions

which can yield overfitting models.

• As for the learning rates, several biases have to be taken into account. A

small learning rate implies slower training, and thus could be early stopped

by the search algorithm before they would plateau to their top performance.

Moreover, if selecting the learning rates above 0.001, the Pearson correlation

coefficient changes sign with a higher p-value (r = −0.1, pvalue = 0.06).

• SpecAugment surprisingly not only does not improve generalisation but reduces

it, despite the joint optimisation of augmentation strength. This is presumably

related to the underfitting problem reported by the SpecAugment authors [143].

Indeed, data augmentation can make learning ‘harder’, and thus demand

longer trainings and / or heavier models. Note that longer trainings are

especially disadvantageous in this paradigm of hyper-parameter search with

early stopping.

• Other hyper-parameters do not have a clear significant impact on end perfor-

mances.

Search findings validation

Frontend logMel logMel logMel PCEN PCEN PCEN
Architecture resnet resnetPT sparrow resnet resnetPT sparrow
Batchsize 8 8 128 64 128 32
Learning rate 8e-3 7e-4 2e-3 2e-2 1e-2 4e-2
Weight decay 4e-4 9e-3 8e-5 1e-2 1e-3 2e-2
Posweight 4 3 1 5 3 1
Brown noise False False True True False True
SpecAugment False False False False False True
MixUp False False True False True True
# epochs 6 13 9 5 6 5
Same antenna 0.98 0.97 0.98 0.99 0.99 0.99
Different antenna 0.95 0.90 0.91 0.96 0.95 0.98

Table 5.2: Best scoring hyper-parameters resulting from the ASHA search of 100 trials
for each frontend / architecture combination. Corresponding mAP scores are given for
the two test sets.
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To follow up on this hyper-parameter exploration and validate its findings,

using each architecture’s best scoring hyper-parameters (see Tab. 5.2), 5 training

procedures were run with random initialisation. Performances of the latter are

displayed on Fig. 5.9. These results reveal several insights:

• The pretrained ResNet (‘resnetPT’) shows a lower performance than its

random initialised relative. For that matter, it is worth mentioning that

the first convolutional layer had to be replaced prior to training (switching

from a 3 channel input to a single channel input). As a result, the pre-learnt

projection at initialisation might be dysfunctional, and even counterproductive

for final convergence.

• For the remaining architectures (ResNet and sparrow), PCEN yields a perfor-

mance more resilient to random initialisation (smaller variance), and show

significantly improved performance. This will be studied in greater details in

the next section.

• Comparing sparrow and ResNet given PCEN normalised spectrograms, spar-

rows gives a more stable higher performance. One possible explanation for this

is the total number of weights of the architectures. Sparrow has around 300k

trainable parameters, and the ResNet-18 has 11M. With a relatively small

datasets like this one, smaller models might decrease the risk of overfitting.

PCEN beneficial behaviour

The PCEN range compression procedure appeared to be beneficial with some but

not all datasets. For the orca call detection task, it appeared to be beneficial

(Fig. 5.10). To verify the significance of the impact of PCEN, a statistical analysis

was run to compare the two distribution of scores. To discard low performing

models that were early stopped by the search algorithm, only the top 50% of the

scores were kept for each distribution.

The two distribution were significantly different (Kruskal-Wallis H test, p-value

< 0.001) and the gain in performance was higher for the test set from the different
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Figure 5.9: Distribution of performances after 5 runs on the best scoring hyper-
parameters of each architecture. Best scoring hyper-parameters were tuned systematically
using the ASHA algorithm for 100 trials on each architecture independently.
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Figure 5.10: Distribution of performances on the orca call detection task depending
on spectrogram range compression. Scores are taken from trials of the systematic ASHA
hyper-parameter search (all architectures are grouped together). For reach frontend, only
the top 50% scores are reported.

antenna (median gain of 0.03 and 0.08 of mAP for the same antenna and the

different antenna test sets respectively).

The trainable parameters (s, δ, α and r) remained stable around their ini-

tialisation value for a large majority of the training runs. This was not the

case during experiments with other datasets such as the Antarctic blue and fin

whale vocalisations, where the PCEN parameters appeared to diverge towards

irrelevant values (see section 5.3.2). On this orca call detection dataset however,
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PCEN significantly improves generalisation, especially facing domain shift (foreign

test set). This result is consistent with the study by [4] on humpback whale

vocalisation detection.

5.3.2 Experiments on a large public dataset (Antarctic
mysticetes)

This work has been subject to a workshop intervention [21].

The Antarctic mysticete dataset (introduced in section 3.2.2) offers two main

opportunities: its public aspect allows a common mean of evaluation for detection

systems among researchers, and its large size enables this evaluation to be the most

relevant. Indeed, as Table 4.8 summarises, annotations come in large numbers (close

to 80k in total, 2.5k for the least represented class) and are spread across multiple

recording locations, devices and years. As discussed earlier in section 2.1.2, this gives

us a chance to learn robust models and measure their generalisation capabilities.

Spectrogram Architecture SpecAugm Train mAP test mAP
logarithm sparrow no 0.47 0.37
logarithm ResNet-18 no 0.86 0.54
logarithm ResNet-50 no 0.84 0.66

PCEN ResNet-50 no 0.82 0.57
fixed PCEN ResNet-50 no 0.80 0.58
logarithm ResNet-50 yes 0.70 0.60

Table 5.3: Experiments on spectrogram range compression, architecture, and data
augmentation for the detection of Antarctic mysticetes calls. mAP scores are computed
over each class independently before averaging to ignore class imbalance.

With this dataset at hand, several architectures were first experimented, with

trials on different spectrogram range compression and data augmentation. They

are summarised in Tab. 5.3, and demonstrate several insights:

• Non residual architectures such as sparrow don’t have the capacity to learn

even the training set,

• The larger architecture (ResNet-50) generalises better to the test set,

• Spectral data augmentation produces underfitting,
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• PCEN normalisation, whether with trainable or fixed parameters, decreases

generalisation.

The next section will try and get a sense of the latter insight which goes against

the observations on the orca call detection dataset (section 5.3.1).

PCEN unfavorable behaviour

A reasonable hypothesis of why PCEN appears counter productive is that it filters

the long stationary signals of the blue whale (10 to 15 seconds long). In PCEN, the

s parameter describes the coefficient of the IIR filter, which yields the smoothed

version of the spectrogram M. M is then used to withdraw background noise

from the input S (Eq. 5.1).

Accounting for this, we want the IIR to have a high enough time constant τ =
−1

log(1−s) . Indeed, the time constant of a filter is the time it needs to reach 1− 1
e

≈ 0.63

given an logical gate input [115] (we could make the analogy with the blue whale calls

being logical gates on their frequency bin). Using this relationship, with s = 0.01, it

takes 13 seconds for M to integrate 63% of the energy of S. Figure 5.11 illustrates

this effect of s on PCEN normalisation and compares it to the log compression.

This value of s = 0.01 seemed sufficient to avoid withdrawing too much of the

blue whale calls, and was used to train a model with a non-trainable (‘fixed’) PCEN.

On the other hand, the intuition is that if a better value exists, the trainable s

would converge to it during optimisation.

Unexpectedly, the trainable PCEN s parameter converged towards 0.9, an almost

instantaneous smoothing coefficient, high enough to integrate blue whale calls in

the smoothed spectrogram M and subtract them from S. The other trainable

parameters α, δ, and r converged around 0.94, 1, and 0.94 respectively. Considering

these parameters (the smoothed spectrogram M being approximately equal to S

with s ≈ 1), the PCEN equation can be rewritten as Eq. 5.1.

PCENt,f =
(

St,f

(ϵ + Mt,f )α
+ δ

)r

− δr ≈ S0.06
t,f (5.1)
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Figure 5.11: Comparison of the different range compression approaches. All spectrograms
come from the same sample containing a Bm-A call. For log compression, a converged
to 0.3 during training. For PCEN, we show how a too high value for s can lead to the
reduction of some target signals. The remaining PCEN parameters were left to the default
values proposed by Wang et al. [199].

As for the fixed version, the smoothing parameter was set to s = 0.01, corre-

sponding to a 13 sec time constant. It yielded a significant decrease of performance

on the test set (10 points of mAP). Trials were conducted with several other

values ([0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1]) and the maximum performance

was reached with s = 0.025 (reported in Tab. 5.3).

These experiments demonstrate that PCEN does not always yield performance

gains: it depends on the signals to detect and the noises surrounding them. Also,

even if choosing a reasonable parameter s tuned for the target signals, performances

might be lowered. This is perhaps explained by the difference in compression

compared to the trainable log approach [169]. Experiments should thus be conducted

on each task before choosing this spectrogram range compression method.

Another insight on PCEN behavior was yielded by late experiments with the

classification of humpback whale sounds (they are preliminary results not reported

in this thesis). PCEN was beneficial to detect humpback whale calls, but appeared

detrimental to classify then by call type. Put in perspective with the beneficial

impact on orca call detection and the opposite effect on the Antarctic mysticete
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dataset, an hypothesis could be that PCEN hinders performance in mutli-class

and multi-label datasets.

Study of performance metrics

After the selection of the best performing model (ResNet-50 with logarithmic range

compression), the mAP remains quite low as compared to the AUC (0.11 against

0.99 for Bm B calls for instance, see Tab. 5.4). This is due to the high imbalance of

the dataset (ratio close to 50 between amounts of positive and negative samples).

Bm A Bm B Bm Z Bm D Bp 20 Hz Bp 20+ Bp DS
Train AUC 0.99 0.99 0.99 1.00 1.00 1.00 1.00
Train mAP 0.92 0.74 0.75 0.98 0.95 0.96 0.93
Test AUC 0.97 0.91 0.96 0.97 1.00 1.00 0.99
Test mAP 0.73 0.11 0.55 0.83 0.94 0.61 0.86

Table 5.4: Detection performance of the top performing model on the Acoustic Trends
dataset (calls from Balaenoptera Musculus and Balaenoptera Physalus). The model is a
Resnet-50 with logarithmic spectrogram range compression trained without SpecAugment.

Indeed, the mAP uses the precision, which normalises true positives by positive

predictions, whereas the AUC uses the specificity, which normalises true negatives

by negative samples. For a dataset with mostly silent sections like the Acoustic

Trends dataset, the AUC will thus be over-optimistic, and the mAP will be over-

pessimistic. This motivated to experiment on a different, more informative metric:

the number of false positives per hour, previously used by Shiu et al. [173] on

automatic cetacean PAM systems.

Figure 5.12 summarises the number of false positives per hour against the recall

for each class and data source. It shows how for some calls, the performance is

significantly impacted by the data source. This can be explained by a difference

in background noise, average SNR of the annoted calls, or both. Moreover, the

curve for Bm B calls in the Kerguelen 2005 data confirms the low score reported

in Table 5.4, probably due to the presence of hard samples in the dataset (events

that trigger false positive even at high thresholds).
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Figure 5.12: Number of false positives per hour as a function of recall. Curves are
given for each class and each data source. The dotted horizontal line denotes the 20 false
positives per hour threshold.

Data Source Bm A Bm B Bm Z Bm D Bp 20 Hz Bp 20+ Bp DS
Balleny Islands 2015 1.00 1.00 0.98 1.00 1.00 1.00 1.00
Elephant Island 2013 0.99 0.99 0.99 1.00 1.00 1.00 1.00
Elephant Island 2014 0.96 0.97 0.95 0.98 0.99 0.99 0.99
Greenwich 64S 2015 0.97 0.89 0.90 0.91 0.98

MaudRise 2014 0.98 0.82 0.75 0.98 0.92
Ross Sea 2014 1.00

Casey 2014 0.98 0.92 0.96 0.99 0.95
Casey 2017 1.00 1.00 1.00 1.00 1.00 1.00

Kerguelen 1 2005 0.93 0.79 0.89 0.93 1.00 1.00 0.98
Kerguelen 2 2014 0.98 0.94 0.94 0.98 1.00 1.00 1.00
Kerguelen 2 2015 0.99 0.97 0.98 1.00 1.00 1.00 0.92

All 0.98 0.97 0.98 0.99 1.00 1.00 1.00

Table 5.5: Recall at 20 FP/hr for each class and data source. Cells with less than 20
samples are not reported.

Table 5.5 summarises these curves once more by reporting the recall at which

there are 20 false positives per hour. Indeed, Shiu et al. [173] argues that this

threshold is the maximum acceptable for quality control processes.

These results emphasis the importance of the choice of performance metric. It

needs to account for the datasets’ class imbalance, and for the subsequent application

needs. In the absence of the latter, the recall at 20 false positives per hour seems a

good generic, for its stability facing class imbalance and its high interpretability for

production use (other thresholds than 20 can be chosen, depending on project needs).
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5.4 Resulting detectors performance

After exploring several ANN architectures on datasets of different characteristics

(target signals, amount of annotation, diversity of recording systems), this section

intends to get an overview of the resulting detection systems.

Best configurations were kept for each task to report performances. When

multiple runs were operated (20 Hz fin whale pulses and sperm whale clicks) the

median values are reported. As for the fin whale 20 Hz pulses, since 3 test folds

were studied, the median gathers the 5 runs of the 3 folds.

Target signal Archi AUC mAP Rec(20FP/hr)
Fin whale 20 Hz pulses 3 depth-wise 0.99 0.84 0.94

Sperm whale clicks 3 depth-wise 0.93 0.85 0.65
Dolphin whistles sparrow 0.98 0.86 0.61

Humpback whale calls sparrow 0.99 0.99 0.97
Orca calls sparrow 0.99 0.98 0.87

Antarctic mysticetes ResNet-50 0.97 0.66 0.93

Table 5.6: Summary of performances for all trained detection systems on their test
set (see section 4.6). Reported metrics are, from left to right, area under the receiving
operating characteristics curve, area under the precision recall curve, and recall at 20
false positives per hour.

Low complexity architectures such as 3 depth-wise convolution layers suffice in

learning to detect low variability signals such as fin 20 Hz pulses and sperm whale

clicks. To increase the precision, several detections can be integrated in larger

temporal windows, either with handcrafted rules (discussed with the detection

of fin whale songs in section 7.2) or with learnt sequential models as proposed

by Madhusudhana et al. [120].

The sparrow architecture allows to learn more variable signals, as it was originally

designed for bird classification [77]. It is able to yield satisfactory performances

despite a reduced amount of labels.

Then, when larger amounts of annotations are available, the ResNet-50 architec-

ture originally designed for image classification can be used to detect multiple calls

(Antarctic mysticetes), sharing the same model embedding before discrimination.
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Neither sparrow nor ResNet-18 architectures had the capacity to solve this task

as the ResNet-50 did.

This thesis’ work in annotation and training binary classifiers thus resulted in

successful detection systems for 13 different target signals (the Antarctic mysticetes

model gathering 7 different signals). The satisfactory performances, especially on

test sets that were designed to reflect generalisation capabilities, allow to consider

using these trained models in production. Indeed, as we will see in the next chapters,

the models served to analyse databases of several thousands recorded hours

5.5 Contrastive learning for orca call classification

A second axis of work conducted on training procedures was applied to a classification

task for orca call types. Indeed, call types have been attributed discrete classes, and

have served in behavioural and social structure studies [65, 66]. These studies

were done by manually annotating calls, a time consuming task that we try

to automate here.

This task implied to use other losses than the BCE (the only loss function

used so far). Motivated by the lack of annotations, experiments with unsupervised

algorithms were first conducted, and are reported in the first part of this section.

Then, as annotations were progressively gathered, performances of a semi-supervised

learning algorithm are compared to a traditional supervised learning procedure.

5.5.1 Trials with deep representation learning algorithms

Given the large amount of detections of orca calls (section 5.3.1) and the lack of call

type annotation, unsupervised learning approaches have been experimented with.

This call type classification task comes down to classifying similar pitch patterns

together, which fits with the contrastive learning paradigm. Indeed, learning a

representation that ignores small distortions of shapes (time and frequency shifts

and dilations) seems appropriate: these distortions are found among instances
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Figure 5.13: Distribution of NMIs between clusters found using k-means on learnt
embeddings and labels (5 training initialisation for each algorithm). It needs to be
taken into account that annotations were made by filtering some clusters proposed by
the AE and t-SNE. Here, for a comparison of deep metric learning, Unsupervised Data
Augmentation (UDA) was trained only with its unsupervised loss.

of a call type. Once such a representation has been learnt, supervised learn-

ing can be operated using a small amount of labels to optimise discrimination

boundaries (fine tuning).

As mentioned in section 2.1.2, numerous algorithms have been proposed in

the literature to learn from sparsely annotated datasets using contrastive learning.

They mainly differ by the distance metric they use in their embedding space. In

search for the right one, papers were in part selected for their top position on the

CIFAR-10 with 1000 labels benchmark [105], as it contains a number of classes and

labels that is similar to the dataset at hand. Experiments were thus conducted

with SimCLR [31], UDA [209], Barlow twins [211]), and IIC, [180].

In a way reflecting the caveat of modern days deep learning research, a plethora

of algorithms were implemented, with limited understanding of their underlying

behaviours. Moreover, in addition to their proposed main algorithm, each paper

comes with a handful of training tricks which are also responsible for the reported

performances. This makes a fair comparison between techniques difficult.
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Figure 5.13 reports on learnt representation quality for each of the algorithms

implemented. The metric used is the NMI between clustering of the embeddings

and their associated label. Barlow twins and UDA, for some initialisation, show

a slightly higher NMI than the representation used to annotate (t-SNE projected

AE embeddings).

Despite the invested efforts, none of the implemented algorithms (SimCLR,

UDA, Barlow twins, and IIC) showed a relevant gain in performance after fine

tuning for the classification task (as compared to a random initialisation of weights).

5.5.2 FixMatch versus supervised learning

This work has been subject to a workshop intervention [19].

With the progressive collection of labels, semi-supervised learning approaches

became more and more relevant. Again, several algorithms were experimented

with: Meta Pseudo Labels [151], UDA [209], mixMatch [15] and fixMatch [180].

However, selected for its good loss convergence, reasonable performances, and very

few training tricks needed, fixMatch was retained for further comparison with

the regular supervised approach.

The fixMatch algorithm combines a supervised loss, pseudo labelling, and

consistency training in one framework. Pseudo labelling consists in applying a

supervised loss on samples without annotation by using the highest prediction of a

model (the ‘pseudo label’). This allows to make use of unlabelled data, especially

on easy samples (pseudo labels can be retained only if the confidence is above a

predefined threshold, see Fig. 5.14). This can be beneficial because it broadens the

diversity of data seen by the model without demanding more annotation.

On the other hand, consistency training is the concept of learning a projection

that ignores (is ‘consistent’ against) variations in the data. It is very close to

the concept of contrastive learning aforementioned. FixMatch makes use of it by

applying different levels of data augmentation to its inputs.

Fig. 5.14 shows how data augmentation and pseudo-labelling were combined for

the orca call classification task, following the fixMatch approach. H(p, q) denotes the
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Figure 5.14: The fixMatch algorithm [180], a combination of pseudo-labelling and
consistency training. The figure was taken from the original paper, and adapted for the
orca call classification task.

cross-entropy between the pseudo label and the prediction after strong augmentation.

It represents the unsupervised loss that will be added to the regular supervised

cross-entropy loss before the backward propagation.

The main difference with this thesis’ implementation is the chosen data augmen-

tation policy. Here, SpecAugment [143] was used (instead of RandAugment [37]).

It was applied on PCEN normalised Mel-spectrograms of 2 seconds excerpts, with

128 frequency bins and 128 frequency bins and 262 temporal bins (fs = 22, 050,

NFFT = 1024, hop = 165). Strong augmentations allowed until 20% of dilation

(time and frequency wise), dropping bands of maximum 20 frequency and temporal

bins, and gaussian blurring, whereas weak augmentations capped dilations to 5%,

and dropped bands up to 5 bins, without gaussian blurring.

As for the remaining hyper-parameters, (learning rate, cosine scheduling, batch

sizes, pseudo-labelling threshold, and loss weighting) they were left as proposed

by the paper [180].

90/10 train/test split 50/50 train/test split
F1 score Accuracy F1 score Accuracy

Supervised 0.95 0.95 0.94 0.94
FixMatch 0.92 0.94 0.84 0.89

Table 5.7: Comparison of performances for regular supervised learning and semi-
supervised learning approaches. Results are given for a regular train/test split, and with
a reduced training set (200 samples per class in average).
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The resulting performances of semi-supervised and supervised training are

compared in Tab. 5.7, with the accuracy computed across all samples and the

F1-score being computed for each class independently before averaging. Both were

trained with a ResNet-50 and cosine learning rate scheduling.

The results demonstrate a counter productive effect of the unsupervised loss,

even when reducing the number of annotations by half (approximately 200 samples

per class in average). This might be explained by a too strong augmentation

policy which might mask out complete calls in some cases (some calls lie in less

than 20 frequency bins for instance). Further work should focus on researching

augmentations that are more adapted to the variations found among calls of the

same types but without risking to change
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6.1 Context and objective

Given previously trained detection and classification systems, this section describes

how they can be put to production and serve species conservation purposes. Focusing

on the sperm whales and fin whales of the Mediterranean sea, a first axis of

conservation is the reduction of ship strikes, a significant cause of death for these

species evolving in the Pelagos marine mammal sanctuary [142]. Then, the detection

mechanisms is run upon the Bombyx long term survey. This yields insights on

sperm whale behaviour in relation to anthropic pressure, helping to implement
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relevant conservation measures in the long term.

6.2 Alert system for collision risk mitigation

6.2.1 Context and objective

Figure 6.1: Technical plans of the Bombyx 2 system, taken from OSEAN SAS
manufacturing report. (left) Mooring system. (right) Pentaphonic acoustic recorder
and floatability variation system (total height of 3 meters).

As part of the GIAS project aiming at reducing navigation risks in the Mediter-

ranean sea, the Bombyx 2 buoy was designed, in a collaboration between DYNI

and OSEAN SAS. Preliminary work on this project was subject to a conference

publication [18]

This buoy is equipped with 5 hydrophones, a floatability variation system, and

embedded algorithms for the detection of sperm whale clicks and 20 Hz fin whale

pulses. To mitigate surface noise and exposure to strong weather conditions, the

buoy parks at 25 meters depth to record and acoustically detect its target species

(sperm whales and fin whales). In the event of a detection, the buoy reaches the

surface to transmit the alert with supporting data via the mobile network. The
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alerts then allow ferries of the zone to make decisions to mitigate their risk of

collision with nearby whales (reducing speed or changing route for instance).

6.2.2 CNN deployment to an embedded MCU

Section 5.2 introduced low complexity CNNs, especially designed to answer the

needs of this alert system. These models, after being trained on GPUs using the

Pytorch package [145], were implemented on the embedded system, namely the

Microchip PIC32 MCU (integrated on the High-Blue sound card [11]).

This demanded to build a custom interface to export and load architectures

and weights via text files. The exports are done in Python, and imported in

C (required programming language for the MCU). Design choices were made

for the C implementation, for a compromise between flexibility and reduced

development effort:

• The model input consists in a Mel-spectrogram,

• Signal length, sampling frequency, window length, hop size, number of Mel-

bands, and Mel-frequency boundaries are parametric,

• The architecture consists of successive depth-wise separable convolution layers

intertwined with batch normalisation and leaky ReLU,

• The number of layers, and the number of features, kernel sizes and strides for

each layer are parametric,

• The last layer is pooled by maximum to yield a global prediction of the signal.

6.2.3 Computation times

Specifications of the input parameters and processing time for the two target signals

are given in Tab. 6.1. The longest step is by far the spectrogram computation

compared to CNN inference. This comforts the choice of the Fourier transform which

offers a fast FFT implementation, rather than others such as the wavelet transforms.



126 6.3. Long term presence monitoring

Target signal Sperm whale clicks 20 Hz fin whale pulse
Signal length (sec) 10 60
Sampling frequency (Hz) 64,000 4,000
FFT window length 512 4096
FFT hop size 256 256
Mel bands 64 64
Mel start (Hz) 2,000 0
Mel end (Hz) 25,000 100
Signal loading (sec) 1 5
Spectrogram computation (sec) 12 26
CNN inference (sec) 4 4

Table 6.1: Specifications and corresponding processing times on the PIC32 MCU, for
the detection mechanisms of sperm whale clicks and 20 Hz fin whale pulses.

6.2.4 Detection report

In the event of detections triggered by the CNNs, the buoy is ordered to lift

towards the surface to transmit a report supporting the alert. It includes multi-

channel chunks of signals (cut surrounding detection peaks), prediction sequences

for the two species, and buoy orientation (compass, and magnetometer). These

extracts of signals allow experts to confirm the veracity of the alert and to take

decisions accordingly. Moreover, the reported extracts being multi-channel (5

hydrophones), triangulation via cross-correlation is possible, increasing the spatial

precision of the alert.

The prediction sequences can serve a quick discrimination between false positives,

by examining distribution among successive files (Fig. 6.2).

6.3 Long term presence monitoring

In addition to its production use in the context of ship collision mitigation, the

sperm whale click detection CNN has been forwarded on the whole Bombyx dataset

(3,532 recorded hours from May 2015 to December 2018) for a long term study

of sperm whale presence. This work resulted in a journal publication [155], from

which some of the results are reported here.
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Figure 6.2: Comparison of the distribution of model predictions for a day with a sperm
whale (July 7th 2015) and a day with false detections (September 8th 2017).

6.3.1 Sperm whale acoustic presence

A first analysis focused solely on reporting the presence of sperm whales through

the recorder years. Files (1min long) with more than 40 CNN predictions above

0.95 were manually verified using the interface described in section 4.3.2. Like

so, automatic detections were validated and number of individuals were estimated

(inferred from simultaneous click trains and TDOA tracks). This process yielded

57 new sperm whales passages (missed during the annotation procedure described

in section 4.3.2), and 25 false positives (including 15 triggered by sound card

malfunctions). The notion of passage was used to account for sperm whale presence,

considering that clicks belong to the same passage if separated by less than 1h.

In total, 226 sperm whale passages have been recovered, with a total of 347

individuals. Fig. 6.3 presents the number of detected individuals each day during the

4 years of recording. Sperm whales were found all year round, with no statistically

significant seasonal pattern. The number of animals per passage varied from 1

to 9 individuals, with a mean duration of 4 hours.
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To evaluate dial patterns, the probability of presence was computed for each hour

of the day. Grouping probabilities into four periods (Night, Morning, Afternoon,

and Evening) demonstrates a statistically significant differences among periods of

the day : sperm whales are more present during morning or afternoons than in

the evening (Fig. 6.3, Kruskal-Wallis test : p-value < 0.01).

Figure 6.3: Left (a): The Number of detected sperm whales per day during the 4 years of
recordings (white region: no d = no data). Right (b): Distribution of hourly probabilities
of presence for each period of the day.

6.3.2 Presence in relation to anthropogenic noise pressure

To assess the performance of the detection system as well as to measure the impact

of noise on the presence of sperm whales, the amplitudes of different octave bands

were computed and analysed. The distribution of the background noise (octave

800 Hz) through the day is shown in Fig. 6.4. All octaves’ dial distributions have the

same shape as the 12,800 Hz octave, with the energy peaking around 4am and 9pm.

Ferries cross the study area daily, connecting Toulon or Marseille to Corsica,

with scheduled times between 3am - 6am and from 8pm - 9pm. The closest ferry

route is approximately 3km away from the antenna. For all octaves, dB amplitudes

are significantly higher during ferry schedules (Mann–Whitney test, p-value < 0.05),

with an average gain of approximately 3 dB.

Moreover, as Fig. 6.4 illustrates, the data shows a significantly lower noise

during the sperm whales’ presence (Mann-Whitney U=14.44, sample size=300,
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Figure 6.4: (left) Distributions of 12,800 Hz amplitudes during and outside sperm whale
passages. (right) Superposition of dial pattern of amplitudes for the octave 12,800 Hz and
probability of presence of sperm whales.

p-value < 0.01) for all octaves except 6,400 Hz and 12,800 Hz. This is further

demonstrated in Fig. 6.4, where, during 4 AM and 9 PM (noise peaks), the presence

of sperm whales is lowest. This last figure also shows that the reduced sperm

whale presence is not due to an increased background noise, since sperm whale

probability drops before the background noise rises.

6.4 Conclusion

These studies are a first demonstration of the versatility of the detection systems

designed through this thesis. Indeed, they can be applied to a real-time alert system

to mitigate collision risks, but also in long-term surveys, revealing presence patterns

that are crucial in the implementation of relevant conservation measures.
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7.1 Context and objective

The previous chapter demonstrated how robust detection systems can be used

for species conservation purposes. A second axis of use can also be the study

of animal communication systems. In the past, PAM has put forward several

examples of song and social communication systems in cetaceans. This allows

comparative studies to reflect on the natural evolution of music and language [64].

For that same purpose, robust detection and classification mechanisms are able

131
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to analyse large datasets and yield new insights. This is demonstrated in the

following chapter with the long term evolution of the Mediterranean fin whale

song and communication patterns of the NRKW.

7.2 Fin whale song structure and temporal trends

7.2.1 Context and objective

In parallel to the sperm whale study with the Bombyx dataset, a similar one was

conducted on fin whales of the Ligurian sea, again making use of the detection

system designed for the GIAS buoy. The trained CNN described in section 5.2 was

run over three available datasets : Boussole, Bombyx, and KM3Net (see section

3.2.1). This time, instead of presence monitoring, the study focused on fin whale

song patterns, yet poorly documented in the Mediterranean sea. It is also subject

to a journal publication [20], which results are reported here.

As other cetacean species, fin whales show geographical acoustic differentiation

[83, 130, 29], hypothesised to be cultural in some cases [204]. The divergence of

mysticetes songs in different populations is presumably a result of drifts emerging

from the conformity and creativity constraints of song production [147]. Moreover,

the character displacement theory with songs serving as a discrimination marker

for allopatric populations has been hypothised for fin whales of the Northern

Atlantic [42]. As for the Mediterranean population, it has been shown to be

resident and genetically dissociated from the North Atlantic population [16], and

their songs (especially the Inter Pulse Interval (IPI)) were shown to allow for

their identification [29, 150]. The Mediterranean fin whales do not follow strict

migration patterns or reproduction periods unlike their oceanic conspecifics [137],

so their song can be heard all year round.

The base unit of the songs, the 20 Hz pulse, is shared by all fin whales. These

pulses occur in sequences that typically last several hours [201], with highly regular

pulse intervals between 10 and 40 seconds. The main differentiation of songs lies

in the IPI and pulse spectra [194, 80]. Alike fin whales of the Pacific [204, 83],

Mediterranean 20 Hz pulses fall into 2 distinct types, one with a slightly higher
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frequency content than the other [33, 171] (Fig. 7.2). These two categories are

sometimes labelled 20 Hz pulse and back-beat, they will be referred to as type A and

B for short, with A being the higher pitched pulse. Fin whales of the Pacific and

Atlantic often exhibit sequences that alternate between A and B pulses. These are

called doublet patterns, as opposed to singlets where only one of the pulse types occur.

In doublets there is a strong relationship between IPI and pulse type: two different

IPIs are found, one from A to B, and another one from B to A [138, 35, 68, 130, 83].

On the other hand, singlets also follow their own stereotypical IPI.

Mediterranean fin whale songs present more diversity in the consecution of pulse

types than simple singlets and doublets (Fig. 7.2). Nonetheless, two studies present

stereotypical IPIs. Based on recordings from 1999, Clark et al. [33] observe a link

between pulse type and IPI in the Mediterranean sea for two bouts (about 100 pulses).

About ten years later, Castellote et al. [29] observe a common IPI around 14.9 sec

for that same population, but do not mention its relationship with pulse types.

Besides geographical variations, fin whale song structures also exhibit temporal

variations, such as seasonal IPI increases [138, 130], and inter-annual variations of

IPI and peak frequency [204]. PAM stations combined with automated analysis (tem-

plate matching approach) have played a key role in revealing these long-term trends.

Until now, no large scale analysis has been conducted on Mediterranean fin

whale songs that could reveal the long-term evolution of their vocal behaviour,

which motivates the following study.

7.2.2 Method
Model inference

While the model was trained to detect pulse presence in 5-second segments, the

convolutional stack is designed to maintain the temporal resolution of the predictions

throughout the network. Discarding the max pooling layer at the end of the CNN,

pulse times were retained as the highest predictions above a given threshold within

sliding 4 second windows. These timings are approximate up to the size of the

receptive field of the network (0.8 seconds).
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Thresholds were set at the balance point of the ROC curves (equal sensitivity

and specificity). This setting lead to sensitivities and specificities of 0.96 and

0.97 for the Bombyx and Boussole data respectively. For the KM3Net data, since

the ROC curve is unknown (no annotation are available), a threshold of 0.12 was

chosen so that there is approximately the same proportion of detections as in

Bombyx and Boussole (≈ 0.5%) .

Tab. 7.1 summarises the resulting detections, along with a calendar Fig. 7.1.

Following Watkins et al. [201], pulses at a distance of less than 45 seconds were

considered as being part of the same sequence, and sequences less than 2 hours

apart were considered as being part of the same bout.

Data source Boussole [107] Bombyx [74] KM3Net [1] Total
Location South of Sanremo Port-Cros Island Cap Sicié
Recording year 2008-2009 2015-2018 2020-2021
Recorded time (hours) 1,860 3,291 1,124 6,275
Detection threshold 0.15 0.68 0.12
Pre-filtering detections 52,863 83,583 9,684 146,130
Detected pulses 1,647 2,827 657 5,131
Detected A pulses 1,411 2,554 322 4,287
Detected B pulses 236 273 335 844
Detected sequences 246 615 58 919
Detected bouts 51 214 11 276

Table 7.1: Summary of recording characteristics and automatic detections for each
source of data.

Spectro-temporal pulse analysis

Following the detection process, a signal processing analysis was conducted to

precisely describe each pulse (exact time position, center frequency, bandwidth and

SNR). This yields the necessary data to search for song patterns, as shown in Figure

7.2.

For this analysis, an 8 sec window surrounding the prediction peak is selected

(T = [0, 8]), band-pass filtered (Butterworth of order 3 between 10 Hz and 30 Hz),

and resampled at 250 Hz. The STFT is then applied to the resulting signal (Hann

window of 256, NFFT = 1024, and hop = 8) resulting in spectral and temporal

resolutions of 0.24 Hz and 0.03 sec respectively.
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Figure 7.1: Number of detected sequences for each day with recordings, normalised by
the amount of recorded hours. Grey cells denote days with recordings but no detection.

From this spectrogram, the precise time position of the pulse t̂ is first estimated

by selecting the column of the maximum value in the 18-22 Hz frequency band

(Eq. 7.1). This value will be kept for IPI measurements.

t̂ = argmax
t∈T

(
max

f∈[18,22]
(Sf,t)

)
, (7.1)

To measure the spectral envelope of the pulse, a 1.2 sec window around t̂

is max-pooled time wise. Background components are withdrawn (to focus on

the pulse spectra only) by subtracting an estimate of the background spectrum:

the median of each frequency bin within the window T (Eq. 7.2). Doing so,

effects such as the impact of SNR on peak frequency and bandwidth (observed

by Helble et al. [83]) are mitigated.

E(f) = max
t∈[t̂−0.6,t̂+0.6]

(Sf,t ) − median
t∈T

(Sf,t) (7.2)
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Figure 7.2: Spectrogram of a fin whale pulse sequence recorded by the Bombyx buoy in
October 2018 (fs = 250, NFFT = 1024, hop = 8, padding = 75%). Dots show the center
frequencies of the detected pulses, with white dashed lines showing IPIs. The grey dashed
line denotes the discrimination threshold between type A and B pulses, at 19.88 Hz.

The resulting pulse envelope is used to compute the left and right boundaries of

the pulse spectrum, with max E(f)
4 as a threshold (equivalent to -6 dB). Left and right

intersection frequencies are linearly interpolated to increase the precision of the

estimate. This process yields the 6 dB bandwidth (width between the boundaries),

and the center frequency (mid-point between the boundaries) of the analysed pulse.

For later filtering by pulse quality, the SNR is also computed following Eq. 7.3

(pulse energy as the maximum of its envelope and background energy as the median

of the spectrogram surrounding the pulse).

EBackground = median
f∈[15,25]

T \[t̂−1,t̂+3]

Sf,t,

EP ulse = max
f

E(f),

SNR = 10 log10

(
EP ulse

EBackground

)
.

(7.3)

The pulse spectral characteristics of mysticetes are often described using the

frequency of maximum energy (peak frequency) or the spectrum weighted mean

(centroid frequency) [204, 121]. Here, the center frequency was chosen, as it appeared
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Figure 7.3: Histogram of the center frequencies of the detected pulses. Black lines
denote the fitted GMM.

to be better suited for the discrimination between the two pulse types. In fact, when

modeling the distribution of peak frequencies using a Gaussian mixture model, the

two components (emerging from the two types of pulses) overlap more than when

using center frequencies (the Kullback-Leibler divergence between the Gaussian

components in center frequency is significantly higher than that of peak frequencies,

with 113 nats and 30 nats respectively).

Pre-analysis filtering

To filter out false positives, only pulses with a bandwidth below 10 Hz and a

center frequency within [18.5, 22.5] were retained. Besides, only sequences with a

mean SNR of at least 8 dB, and with at least 3 pulses were kept for the following

analysis. Sequences containing IPIs below 10sec or above 45sec were discarded

as well. The resulting number of registered pulses and sequences are shown in

a calendar Fig. 7.1 and in Tab. 7.1.

To classify between A and B types, a two component GMM was fitted on

the center frequency data (Fig. 7.3) using the Expectation Maximisation (EM)

algorithm. This lead to a threshold of 19.88 Hz to discriminate between the two
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types. Even though the center frequency is found to evolve over time, the change

is sufficiently small to not interfere with the categorisation (see Fig. 7.6).

7.2.3 Results
Stereotypical IPI

The time between a pair of consecutive pulses in a sequence (the IPI) appears to

be strongly determined by their type (see Fig. 7.4). The typical interval for an

‘AB’ bi-gram is 2sec longer than that of ‘AA’ or ‘BA’. On the other hand, the

’BB’ pairs (less frequent but still commonly found) are 11sec longer on average,

but present larger variability than the others.
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Figure 7.4: Histogram of the IPI for each type sequence (bi-gram).

Figure 7.5 shows how these intervals have changed over the course of two decades,

following an approach similar to Weirathmueller et al. [204]. For each month and

pulse type pair, points denote the most frequent IPI (quantised with a resolution

of 0.1sec). For months containing more than 100 bi-gram occurrences, the most

frequent IPI was retained only if representing at least 5% of it. Points measured

in previous studies of the same population were also added : in 1999 by Clark

et al. [33] (the only study to our knowledge that references IPI depending on type
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sequence in the Mediterranean sea), and in 2008 by Castellote et al. [29] (assuming

it describes the most common pair ‘AA’, as it was not specified). The ‘BB’ sequence

did not provide enough occurrences for the statistical tests to be relevant.
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Figure 7.5: Scatter plot of the most frequent IPI per month for each type sequence.
Fitted linear models are shown as grey dashed lines. Points extracted from Clark et al.
[33] and Castellote et al. [29] appear as crosses.

For sequences ‘AA’, ‘AB’, and ‘BA’, fitted linear models are plotted (their

coefficients of determination are 0.83, 0.89, and 0.91 respectively). The p-values

for the null-hypothesis that the slopes are not significantly different from 0 are

all inferior to 0.01. The estimated slopes for the ‘AA’, ‘AB’, and ‘BA’ bi-grams

are 84, 83, and 88 respectively (in milliseconds/year).

Center frequency

In a similar fashion, temporal trends of pulses’ spectral characteristics were analysed.

This revealed an intra-annual decrease in pulse center frequency between the months

of August and May (Fig. 7.6). On the other hand, no inter-annual shift was observed

(Pearson analysis yields a correlation coefficient of -0.06 between pulse absolute

dates and their center frequency).
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Figure 7.6: Bi-histogram of the center frequencies against months of the year. The
horizontal line shows the separation between type A and type B pulses. The fitted linear
model is shown as a black dashed line.

For this statistical analysis, center frequencies were quantised to a resolution of

0.1 Hz and grouped by months. Center frequencies with the most occurrences were

kept, if among groups (months) of at least 50 pulses. Fitting a linear model on

the retained points yields a coefficient of determination of 0.73, with an estimated

slope of -0.08 Hz/month) (for the null-hypothesis that the slope is not significantly

different from 0, the p-value is below 0.01).

For comparison with other previous studies, the same analysis was ran using peak

and centroid frequencies. The slope of the observed intra-annual trends are similar

for all metrics (-0.09 Hz/month, -0.08 Hz/month, and -0.11 Hz/month for peak,

center, and centroid frequencies respectively) and p-values for the null-hypothesis

that the slope is not different from 0 are all below 0.01.

Correlation between center frequency and IPI

With the observation of synchronous inter-annual shifts of both IPI and center

frequencies in Pacific fin whales, the hypothesis of a link between the two arose.

Weirathmueller et al. [204] states that the augmentation of the IPI through the
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years could be explained by the simultaneous decrease in pulse peak frequencies

(lower frequency pulses presumably requiring a bigger effort to produce, a bigger gap

between them could be needed). The observed stereotypical IPIs of Mediterranean

fin whales also support this idea (sequences towards A pulses show lower IPIs).

This hypothesis was thus further tested by analysing the correlation between IPI

and center frequency (for pulses with IPIs between 14 and 20 seconds).

To dissociate this analysis from the link between pulse types and IPI, 3

component Gaussian mixture model was fitted on the bi-dimensional representation

of pulses (center frequency versus time until the next pulse). This enabled to group

the different pulse bi-grams (‘AA’, ‘AB’, and ‘BA’), and conduct a correlation

analysis on each group independently. Figure 7.7 shows the scatter plot of the

pulses with their assignation to each mixture component. For each of the latter,

the Pearson correlation coefficient was computed, yielding -0.37, -0.22, and -0.35

for ‘BA’, ‘AB’, and ‘AA’ respectively (all p-values are below 0.01).
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Figure 7.7: Scatter plot of pulses center frequency against the time until the next pulse
(IPI). Colours denote the GMM assignations, whose means are marked with crosses.
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7.2.4 Discussion
Mediterranean sea stereotypical IPIs

The present study led to the confirmation of the local stereotypical IPIs being

determined by pulse bi-grams. These results were previously shown on relatively a

small corpora of around 100 pulses [33], they are hereby confirmed with a corpus

larger by an order of magnitude, and over a span of 10 years.

Moreover, two temporal trends were observed. They are put in relation to other

fin whale song studies in Tab. 7.2 and discussed in the following sections.

Inter-annual Intra-annual
Study Location Frequency IPI Frequency IPI
Weirathmueller et al. [204] N.E. Pacific -0.17 Hz/yr 0.5-0.9 sec/yr - -
Oleson et al. [138] N. Pacific - - - +7.5 sec
Leroy et al. [112] Indian -0.21 Hz/yr - ∼ -0.1 Hz/mth -
Helble et al. [83] N. Pacific - 0.6-1.3 sec/yr - -
Morano et al. [130] N.W. Atlantic - * 0.5 sec/yr - +5.5 sec
Watkins et al. [201] N.W. Atlantic - - - +6 sec
Širović et al. [178] Gulf of California - ∼ 1 sec/yr - ∼ +8 sec
Furumaki et al. [68] Chukchi sea - ∼ 0.5 sec/yr - ∼ +1 sec
Wood and Širović [206] W. Antarctic -0.2 Hz/yr 0.1 sec/yr - -
self W. Mediterranean - 0.1 sec/yr -0.1 Hz/mth -

Table 7.2: Summary of song pattern trend studies. For intra-annual IPI shifts, since
trends are not linear, we report the difference between low IPI season and high IPI season
(summer vs winter). The inter-annual IPI shift for Morano et al. [130] (see ‘*’) is reported
between two consecutive years only.

IPI trends

Mediterranean fin whale stereotypical IPIs are shown to evolve over the years,

following a linear growth of approximately 0.1 sec/year over the past 20 years.

Such trends had already been observed in the songs of North-East Pacific [204]

and Central-North Pacific [83] fin whales.

Inter-annual shifts in IPI are rather recent and poorly documented. Weirath-

mueller et al. [204] state that the increasing IPI might be linked to the downward

frequency shift, lower frequency pulses potentially being more demanding in energy.

As for the present data, a low correlation coefficient was measured between the

two variables, and no evidence of any inter-annual center frequency decrease was
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found. These observations thus go against this hypothesis, but more data is

required to draw firm conclusions.

As for the IPI shift slopes, it seems plausible that the differences between

Pacific and Mediterranean populations arise culturally. Whether they are originally

caused by the same factors or not, the singing patterns drift independently, with

song conformity only taking place within a given population. If environmental

or physiological factors alone were responsible for such patterns, they would have

to be present both in the Pacific and in the Mediterranean sea, but operating at

different rates. The hypothesis of the post-whaling population recovery (increasing

density and animal sizes) explaining those trends suits the latter conditions, as

recovery rates could differ between Mediterranean and Pacific waters. On the other

hand, cultural features such as contact rate between individuals could explain slope

differences as well, regardless of the root cause of the shift.

On the other hand, studies of Atlantic and Pacific fin whales [130, 201, 138, 204]

point to IPI increases during winter, before dropping back to autumn values. These

trends are hypothesised to be directly linked to the reproductive season [138] (due to

hormonal activity or progressive dilution of the competition for instance). No such

trend was observed in the present data, but the irregular data sampling through

seasons might create an observational bias in that sense.

Pulse frequency trends

Inter-annual shifts in vocalisation frequencies were already documented in blue

whales [123, 121, 159], and bowhead whales [191]. Fin whales also showed similar

trends in the Pacific [204] (for 20 Hz pulses, -0.17 Hz/year) and in the Indian Ocean

[112] (for 99 Hz pulses, -0.21 Hz/year). Numerous hypotheses have been formulated

for the cause of this phenomenon, such as the increase in population density or body

sizes (following the cessation of commercial whaling), the increase in calling depth

[71], the augmentation of noise from melting icebergs [112], or the acidification of

the oceans affecting sound propagation [86] (among others).
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No inter-annual frequency shift was found in the analysed data. Mediterranean

fin whales could thus be an exception to this widespread trend. Nonetheless, an

intra-annual decrease in center frequencies was observed (-0.08 Hz/month). Such

phenomenon was previously observed in large mysticetes of the Indian Ocean

including fin whales [112]. The latter study hypothesised pulse frequencies to

follow seasonal ambient noise level variations (notably due to melting ice). Such

phenomenon does not apply to the Mediterranean sea.

7.3 Orca call sequences

7.3.1 General context and objective

As previously mentioned, part of mysticete communication systems have been

characterised as songs for being associated with courtship. No such phenomenon

has been observed in odontocetes. Nonetheless, toothed whale communication has

been studied extensively, especially with bottlenose dolphins and orcas. Their vocal

displays (whistles and pulsed calls) have been suggested to serve social signaling

and bonding purposes [92]. Bottlenose dolphins use individual specific signature

whistles [196], whereas orcas use community specific pulsed calls [65] (the set of

call types are specific at several levels such as clans and pods).

For orcas, the observation of stereotyped calls in relation to behavioural states has

suggested no strict relationship between the two, but rather a group identification

function. Ford [66] has manually analysed 20 thousands calls from 43 days of

boat observation from 1978 to 1983, and reported call type bi-gram distributions

(Fig. 7.8). Some call type distributions differed across activities, especially when

involving multiple pods. Filatova et al. [58] have manually analysed 32 hours of

recordings for calls to be assigned among 4 categories, and showed that activity did

not affect proportions of occurrence but multi-pod interactions did.

Given the available 5 years of continuous recordings from the OrcaLab obser-

vatory (section 3.2.1), the following study will focus on the NRKW population of

British Columbia. First, the detection CNN presented in section 5.3.1 was run

on the summers from 2015 to 2020 (season of presence of the NRKW), detecting
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N1 N2 N4 N5 N9 Total

Ford - 10k call transitions 
 1978-1983

N1

N2

N4

N5

N9

0.29 0.11 0.34 0.11 0.15 0.05

0.04 0.35 0.36 0.09 0.15 0.17

0.04 0.14 0.56 0.11 0.15 0.44

0.05 0.14 0.32 0.34 0.14 0.13

0.04 0.11 0.34 0.09 0.42 0.21

N1 N2 N4 N5 N9 Total

self - 100k call transitions 
 2015-2020

0.31 0.05 0.33 0.14 0.17 0.1

0.11 0.24 0.33 0.15 0.16 0.04

0.07 0.03 0.69 0.08 0.14 0.55

0.1 0.05 0.36 0.3 0.19 0.12

0.09 0.03 0.41 0.12 0.36 0.19
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.8: Comparison between the transition matrix from Ford [66] (left) and the
present study (right). The ‘Total’ columns denotes the proportion of each call in the
dataset.

more than 300 thousands calls. Then, the classification CNN presented in section

5.5 allowed to automatically recognise 7 common call types, and to tell when

other calls are encountered.

The intent of this work is to study the potential structure in the sequences

of call types, trying to make the most out of the large but blind corpus at hand

(no information is available on associated behaviour or on the individual that

emitted a call). We start by estimating the repertoire complexity following the Zipf

power law coefficient approach. Then, to question the randomness / predictability

of the sequences of types, we compare the occurrence of specific events with

random simulations.

For the following analysis, sequences of calls were extracted from the CNN

predictions (detections are located at confidence peaks that are above 0.8 and

between 0.4 sec and 2 sec long). Calls were considered as being part of the same

sequence if separated by less than 3 seconds. Sequences with at least 3 calls, and

with no call labelled as ‘other’ were kept. This yielded 15,305 sequences with

a total of 77,202 calls (Fig. 7.9).
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Figure 7.9: Log-survivor plot [52] of the extracted sequences’ lengths.

7.3.2 Zipf’s law and call type repertoire
Context

In several studies, Zipf’s Law [218] has been used to quantitatively evaluate animal

communication system repertoires (for humans [210] and non-humans [122, 99]).

Such analysis rely on the estimation of the Power Law Coefficient (PLC) which

reflects the relationship between a word’s rank r (for the most frequent word r = 1

and so on) and its frequency f , following Eq. 7.4.

f = α × rPLC (7.4)

The PLC denotes how stereotyped a system is, PLC = 0 meaning a uniform

distribution, and PLC << −1 meaning a high predictability. Zipf [218] states

that for a system that follows constraints of efficiency (“least effort”), the PLC

would converge to -1. This is supported by the fact that most human languages

have a PLC close to -1 [210]. A PLC would thus be a necessary condition for a

communication system to be language-like [99, 122].

Method

If enough data is available, a straightforward linear regression suffices to estimate

the PLC of a repertoire (Fig. 4 of Kershenbaum et al. [99]). Eq. 7.5 shows the
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Figure 7.10: Zipf’s law analysis for the whole repertoire of detected calls and for the
repertoire of calls from extracted sequences. PLC are reported along with associated
coefficients of determination for the linear regressions.

logarithm applied to Eq. 7.4 that allows for a linear regression. Figure 7.10 shows

the resulting linear fits (via least square) in a log-rank vs log-frequency plot.

log(f) = −PLC × log(r) + log(α) (7.5)

Discussion

The estimated PLC from the whole dataset (-1.12) lies close to the one estimated

by Kershenbaum et al. [99] for a repertoire of the same species but with a much

smaller dataset (with 773 calls, PLC ≈ −1.1))1.

The large gap between the PLCs from the whole dataset and that of the selected

sequences demonstrates the significant impact that data sampling has on the such

estimates, even with large datasets. These results do not refute the potential for

orca call sequences to be language-like, but do not prove it either.

1The estimated PLC of Kershenbaum et al. [99] varies between -1 and -1.5 depending on
the method employed, but the method that yielded -1.5 also showed a large error during the
verification showed in Fig. 7 of the paper.
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7.3.3 Span of correlation in sequences
Context

An approach to measure the randomness or predictability of sequences is to measure

the MI between call types. The MI measures the KL divergence between marginal

and joint probability distributions of two random variables. Applying this concept

to dolphin whistle sequences, Ferrer-i Cancho and McCowan [57] propose to measure

the MI between calls X and Y at a distance d (Eq. 7.6). The distance here is

measured in number of calls that separate a pair, d = 1 denoting a consecutive pair.

I(X; Y |D = d) =∑
x,y

p(X = x, Y = y|D = d) log
( p(X = x, Y = y|D = d)

p(X = x|D = d)p(Y = y|D = d)
) (7.6)

Method

To have a reference against which measures of I(X; Y |D = d) can be compared, we

can randomly generate call pairs and measure their own I(X; Y |D = d). For that

purpose, Ferrer-i Cancho and McCowan [57] propose two randomisation methods:

• Global randomisation: shuffle the concatenation of all sequences before

recreating sequences of the same size to count call pairs,

• Local randomisation: shuffle the concatenation of all pairs at distance d

before extracting pairs from the resulting vector.

In each of these methods, we generate as many pairs as observed in the data.

They are more or less equivalent to generating sequences via a first order Markov

model (taking into account only the probability of occurrence of a call). I propose to

rather use a second order Markov model (or bi-gram model) to generate sequences

and extract call pairs. Doing so, we integrate the propensity of consecutive calls

to be of the same type, as observed by Ford [66] and shown by Fig. 7.8.

Using these randomisation methods, we can generate call pairs (as many as in

the real data), measure I(X; Y |D = d), and compare it to that of the real data.
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Figure 7.11: (solid lines) MI between pairs of call types depending on their relative
distance d. For randomised MI (10,000 trials for each method), the mean ± standard
deviation is given. (dashed lines) associated p-value for the null-hypothesis that the
randomised pairs have a higher MI than the observed ones.

Doing so, and for each distance d, we can count the number of times the random

pairs show an MI higher than the real ones (in this case out of 10,000 trials).

Again following Ferrer-i Cancho and McCowan [57], we estimate the p-value of the

null-hypothesis that random pairs have a higher MI than real ones, defined as the

number of trials with a higher MI divided by the total number of trials.

Discussion

Figure 7.11 shows the evolution of the MI with a growing distance between calls.

The fact that less long sequences are available (Fig. 7.9) might explain why the MI

grows for d > 11. Non-surprisingly, the bi-gram generated pairs have the same MI

than real ones at d = 2. Nonetheless, the MI of the observed pairs is significantly

higher than the global, local and bi-gram randomisation, showing that single and

second order Markov models do not suffice in modelling the observed sequences.

7.3.4 Propensity for specific patterns
Method

This sections studies the propensity for patterns in consecutive calls of observed

sequences. It focuses on patterns of 4 consecutive call types (tri-grams) noted

fr(X = x, Y = y, Z = z). Following a similar approach than in the last section, we

generate as many tri-grams as observed in the data using a second-order Markov
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model. Doing so, we can compare the frequencies of generated tri-grams (fg(X =

x, Y = y, Z = z)) against real ones. Repeating this procedure for several trials (1,000

in this case), we can count the number of times a tri-grams appears more in the

generated data than in the observed data, noted Ng(X = x, Y = y, Z = z) (Eq. 7.7).

Ng(X = x, Y = y, Z = z) =
1,000∑
i=1

1 if fr(X = x, Y = y, Z = z) ≤ fg(X = x, Y = y, Z = z)
0 otherwise

(7.7)

Ng allows to test the null-hypothesis that the frequency of a tri-gram is explained

by the bi-gram distribution alone. If Ng is below 0.01, the tri-gram appears

significantly more than expected with the bi-gram model. Conversely, if Ng is above

0.99, tri-gram appears significantly less than expected with the bi-gram model.

Discussion

As stated by Kershenbaum et al. [98], “The most common application of the Markov

model is to test whether or not units occur independently in a sequence”. We make

follow this incentive and compare randomly simulated n-gram frequencies with

observed ones. Doing so, we can test whether an smaller order model suffices in

explaining a higher order one. 54 tri-grams appeared less than expected, and 52

tri-grams appeared more (out of 343 possible ones).

7.3.5 Propensity for specific patterns
Method

This sections studies the propensity for patterns in consecutive calls of observed

sequences. It focuses on patterns of 4 consecutive call types (quadri-grams) noted

fr(X = {a, b, c, d}). Following a similar approach than in the last section, we

generate as many quadri-grams as observed in the data, this time using a third-order

Markov model. Doing so, we can compare the frequencies of generated quadri-grams

(fg(X = {a, b, c, d})) against real ones. Repeating this procedure for several trials

(n = 15 in this case), we can count the number of times a quadri-gram appears more

in the generated data than in the observed data, noted Ng(X = {a, b, c, d}) (Eq. 7.8).
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Ng(X = {a, b, c, d}) =

1
n

×
n∑

i=1

1 if fr(X = {a, b, c, d}) ≤ fg(X = {a, b, c, d})
0 otherwise

(7.8)

Ng allows to test the null-hypothesis that the frequency of a quadri-gram is

explained by the bi-gram distribution alone. If Ng is below 0.01, the quadri-gram

appears significantly more than expected with the tri-gram model. Conversely, if

Ng is above 0.99, the quadri-gram appears significantly less than expected with

the tri-gram model.

Discussion

As stated by Kershenbaum et al. [98], “The most common application of the Markov

model is to test whether or not units occur independently in a sequence”. We

follow this incentive and compare randomly simulated n-gram frequencies with

observed ones. Doing so, we can test whether a smaller order model suffices in

explaining a higher order one.

For instance, out of 100,000 trials (each generating 31,287 quadri-grams using a

third order Markov model) the quadri-gram ‘N4 N9 N9 N4’ appeared 243 times in

average (std = 15). On the other hand, this quadri-gram was observed 324 times

in the real data, and therefore none of the random generations yielded a higher

frequency of occurrence for it. This means that if a ‘N4’ precedes ‘N9 N9’, there is

a higher chance for a ‘N4’ to follow than expected in average after ‘N9 N9’.

Considering 54 tri-grams appeared less than expected, and 52 tri-grams appeared

more (out of 343 possible ones).
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Table 7.3: Quadri-grams appearing significantly more or less than expected with a third-
order Markov model. The most frequent quadri-gram starting with the same tri-gram is
also given (right column).

Quadri-gram Ng Most frequent
Observed more than in random generations

N23 N23 N23 N23 0.0048 N23 N23 N23 N23
N4 N4 N4 N4 0.0 N4 N4 N4 N4
N4 N5 N5 N4 0.00016 N4 N5 N5 N4
N4 N9 N9 N4 0.0 N4 N9 N9 N4
N5 N5 N5 N5 0.0016 N5 N5 N5 N5
N9 N4 N4 N9 0.0 N9 N4 N4 N4
N9 N4 N9 N9 0.00736 N9 N4 N9 N4
Observed less than in random generations

N1 N4 N4 N4 0.9968 N1 N4 N4 N4
N4 N4 N4 N23 0.99984 N4 N4 N4 N4
N4 N4 N4 N5 0.99664 N4 N4 N4 N4
N5 N4 N4 N4 0.99536 N5 N4 N4 N4
N9 N5 N4 N4 0.99872 N9 N5 N4 N4
N9 N9 N4 N4 0.99952 N9 N9 N4 N4
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Conclusion and perspectives

8.1 Thesis contributions

This thesis demonstrates several PAM use cases, revolving about the use of ANNs

to accelerate data analysis. It lies between a tutorial on how to use ANNs for PAM,

an empirical study of what works and what doesn’t, and the demonstration of the

wide potential ahead of this approach. It is motivated by the following problematic:

how to best use ANNs for cetacean vocalisation detection ? This thesis answers the

latter in 3 folds : data annotation, architecture design and training regularisation,

and detection exploitation for biological insights.

Methods in annotation Robust detection systems are needed to save analysis

time on long term PAM recordings. ANNs offer an opportunity for this, but demand

annotations to be trained and evaluated on. In the absence of already available

robust analysis systems (detection or classification) and annotated databases, I

proposed several procedures to enhance annotation efficiency, making the most out

of recording characteristics and prior knowledge on target signals.

The proposed procedures where illustrated with several use cases starting from

raw recordings, yielding 6 annotated databases (5 for detection and 1 for classifica-

tion).

153
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Training procedures Given annotated databases, training ANN allowed to solve

the detection tasks for 12 target signals (5 from custom annotated databases, and

7 from the Antarctic mysticetes database). For signals with a limited variability

such as sperm whale clicks and fin whale 20 Hz pulses, relatively small (three depth-

wise convolution) networks yield satisfactory performances, improved compared

to previous handcraft algorithms.

As for detecting the more variable orca calls, systematic searches and heav-

ier models also yield satisfactory performances. Several insights arise from the

exploration of network frontends, architectures and hyper-parameters, but they

might be task specific.

On the other hand, heavier models can also serve the detection of several

target signals with a shared set of weights, as shown with Antarctic mysticete

calls. In this context, performance metrics are discussed and an interpretable

metric for PAM uses is proposed.

Eventually despite efforts in using unlabeled data for self supervised repre-

sentation learning and semi-supervised learning, the regular supervised approach

appeared to be the most efficient for the orca call type classification task.

Applications Perhaps the most ambitious objective of this thesis was to bridge

the gap between training deep learning algorithms and their application to long

term bioacoustic surveys. This was conducted for the study of 3 species: sperm

whales, fin whale and orcas. For each of them, different orientations were taken for

the analysis. Sperm whale presence was studied in relation to anthropogenic noise,

the fin whale song structure was described by long-term trends, and sequences of

orca call types were analysed in search of specific patterns and dependencies.

8.2 Future work

Frontend experiments PCEN is a promising frontend but does not lead to

a systematic performance gain. Work should be oriented towards understanding
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better why it might be detrimental, especially when fixing its smoothing and

compression parameters.

In addition, to advance on embedded capacities for real time alert systems,

analog feature extraction (stack of band-pass filters) should be experimented with.

This would be relevant to tackle the main computational bottleneck of embedded

bioacoustic analysis: the STFT.

Integration of spatial information The data available at DYNI has the

potential to numerous other studies than the ones conducted so far. Work on

the spatialisation of acoustic sources could be conducted on the data from KM3Net

and OrcaLab data. This would allow to add a new dimension of analysis when

processing vocalisation sequences.

Intra call modulations The analysis of orca call sequences presented in this work

was subject to the prior discretisation by types. Some information is presumably

lost in this process, such as within call variations. Li et al. [114] propose a deep

learning based whistle contour extraction procedure, which seems robust to low

SNR and overlapping calls. Experiments with this approach would be relevant

to the analysis of orca call sequences.

Using ANNs for sequence modelling Modern day language modelling is often

conducted with ANN based methods, especially with the recent boom of Transformer

architectures [44]. These models could be trained on orca call sequences and yield

a notion predictability and / or perplexity more reliable than with n-gram models.
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