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Introduction

With the computational power available today, machine learning has begun a
very active field finding its applications in our everyday life. One of its big
challenge is classification involving data representation (the preprocessing part
in a machine learning algorithm). In fact, classify linearly separable data is
feasible (a simple perceptron can do it). The aim of the whole preprocesing
part is to obtain well represented data by mapping raw data into a feature space
where simple classifiers can be used efficiently. For example, everything around
audio processing uses MFCC until now. This toolbox gives the basic tools for
audio representation using the C++ programming language also providing an
implementation of the Scattering Network which brings a new and powerful
solution for these tasks. Furthermore, the use of this toolbox is not limited to
machine learning preprocessing. It can also be used for more advanced biological
analysis such as animal communication behaviours analysis or any biological
study related to signal analysis.

1 WAV

1.1 File Structure

The WAV file is an instance of a Resource Interchange File Format (RIFF)
defined by IBM and Microsoft. Thee header part of this file is made of comple-
mentary chunks describing the architecture of the wav allowing easy information
storing. Let’s see how these chunks are organized in a WAV file :
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Figure 1: The Canonical WAV file format https://ccrma.stanford.edu/

courses/422/projects/WaveFormat/

The file is made of three main chunks each having a specific role that we will
describe here.

• ChunkID identifies the type of the first chunk with four characters :
”RIFF”.

• ChunkSize is the size of the file left from this point. It will be 36 (sum of
the other chunks sizes) plus Subchunk2Size and this can be easily seen by
summing the different sizes on the right of the header representation.

• Format will be four characters : ”WAVE” (this allows us to check if we
are really reading a wav file during the process).

• SubChunk1ID identifies the second chunk. It is a four characters name :
”fmt ” and starts the data description block.

• SubChunk1Size is simply the size of this block which is 16.

• AudioFormat, also called Format tag, is the option indicating the data
compression used. It is almost always equals to 1 which stands for : no
compression is used.

• NumChannels is the number of channels (1 for mono and 2 for stereo).

• SampleRate is simply the number of samples per second, the frequency.
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• ByteRate is the average number of bytes per second, this can be found
with the following formula : SampleRate ∗NumChannels ∗ BitsPerSample

8 .

• BlockAlign won’t be necessary for us. It can be computed with a formula
: NumChannels ∗ BitsPerSample

8 .

• BitsPerSample can either be 8 or 16 but in general the later is used.

• SubChunk2ID identifies the last chunk block, it is made of the four char-
acters : ”data”.

• Subchunk2Size is the size of the file left which is just the size of the data
since this is the last thing not seen yet..

• Data is finally the values of the signal in the standard pulse-code modu-
lation representation.

1.2 Implementation

The use of the built-in class WAV is simple, the only thing to provide is the
name of the wav file. This can be done during the instantiation of the class of
at any other time. Let’s look at an example.

WAV<double> S igna l ( ”mysignal . wav” ) ;
WAV<double> Signa l2 ;
”mysignal . wav”>>Signa l2 ;
”mysignal2 . wav”>>S igna l ;

Note that the template parameter can be ignored leading to the default value :
float. One instance of the class can be used for different wav files which can be
useful. This WAV variable allows easy interactions and can provide informations
about the loaded file :

S igna l . S i z e ;
S igna l . SampleRate ;
Signal NumberOfChannel ;
S igna l [ 0 ] ; // r e t u r n t h e f i r s t v a l u e o f t h e l o a d e d s i g n a l

Finally, to export the loaded file two options are available. Firstly, it is possible
to export it into a txt file which only export the signal data disregarding all
the other informations. This loss can be avoided using a special method which
export the data back into a wav file, with the following syntax :

Signal>>” newsignal . txt ” ; // t o . t x t
S igna l . PrintWav ( ” newsignal . wav” ) ; // t o . wav

With this implementation, WAV can be seen as a special type. Note that
during the loading, no normalization is used. In fact, only the user can define
the normalizing constant he is interested in (max, L2-norm,...). Finally, for an
external use of this toolbox, one should not need to use this class since it is
just here as a input/output convenience for the other algorithm we will now
describe.

2 Fourier Transform

2.1 Definitions

A sinusoidal wave is characterised by three parameters: amplitude, frequency
and phase.
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• The amplitude is the amount the function varies, positively or negatively,
from zero in the y direction.

• The frequency is how many complete cycles there are of the wave in unit
distance on the x axis (which often measures time)

• The phase is relevant when comparing two waves of the same frequency.
It is how much (measured in degrees or radians) one is shifted relative to
the other on the x axis.

This terminology comes from sound engineering where higher frequency sounds
have higher pitch and waves of greater amplitude are louder. As an alternative
to specifying the frequency, the number of cycles in unit distance, we can instead
specify the wavelength, the length of one cycle. The higher the frequency, the
shorter the wavelength. The lower the frequency the longer the wavelength.
The Nyquist frequency is the maximum frequency that can be detected for a
given sampling rate. This is because in order to measure a wave one needs at
least two sample points to identify it (trough and peak). We will abbreviate
the continuous Fourier transform with CFT and the discrete Fourier transform
with DFT.

Interpretation of the CFT Using the Euler’s formula, we can see the
Fourier Transform as a decomposition of a signal into complex sinus using con-
volutions.

eix = cos(x) + i sin(x)

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx

=

∫ ∞
−∞

f(x)(cos(−2πxξ) + i sin(−2πxξ))dx

=

∫ ∞
−∞

f(x) cos(−2πxξ) + f(x)i sin(−2πxξ)dx

=

∫ ∞
−∞

f(x) cos(−2πxξ)dx+

∫ ∞
−∞

f(x)i sin(−2πxξ)dx

2.2 Fast Fourier Transform

We will now denote xk as the kth value on the signal in the time space and Xk

the kth value of the signal in the frequency domain, N will denote the length of
the signal. A length of N means the indices range from 0 to N − 1 using the
standard counting start at 0.
The fast Fourier transform (FFT) is a instance of DFT which is able to perform
the DFT in O(n log(n)) complexity. The DFT formula using the Twiddle Factor
notation :

∀k ∈ Z,Xk =

N−1∑
n=0

xne
−2πikn
N

Xk =

N−1∑
n=0

xnW
kn
N
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As we can see, we need to perform N operations for each Xk, k ∈ {0, 1, ..., N−1}
thus we are in O(N2). It is possible to use the scaling factor :1/

√
N in order

to have an unitary operator (Parseval’s theorem) which implies that the sum
(or integral) of the square of the function is equal to the sum (or integral) of
the square of its transform. In order to go from N2 operations to N log(N)
operations, three main concepts have to be defined :

• The Danielson-Lanczos Lemma

• The Twiddle Factor properties

• The Butterfly Scheme

2.2.1 Danielson-Lanczos Lemma

This theorem is the foundation of the FFT by allowing a divide and conquer
strategy. In fact, we have the following relations :

Xk =

N−1∑
n=0

xne
−i2πkn
N

=

N
2 −1∑
n=0

x2ne
−i2π2kn

N + x2n+1e
−i2π(2k+1)n

N

=

N
2 −1∑
n=0

x2ne
−i2πkn
N/2 +

N
2 −1∑
n=0

x2n+1e
−i2π2kn−i2πn

N

=

N
2 −1∑
n=0

x2ne
−i2πkn
N/2 +W k

N

N
2 −1∑
n=0

x2n+1e
−i2πkn
N/2

For every Xi we can now divide the N sums into two different summation group
(Even and Odd). Note that for the special case N = 2 the sums are removed and
n is replaced by 0 which means that we are left with a simple linear combination
of the input signal and the Twiddle Factor. If we apply this recursively we obtain
the following architecture :

x

Odd

Odd

Odd Even

Even

Odd Even

Even

Odd

Odd Even

Even

Odd Even

And now for any given input size we are able to break it done into a linear
combination of the input signal with twiddle factors. For example, if N = 4 we
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have after full decomposition :

Xk = x0 +W k
2 x2 +W k

4 x2 +W k
4W

k
2 x3

And for N = 8 :

Xk = x0+W k
2 x4+W k

4 x2+W k
4W

k
2 x6+W k

8 x1+W k
8W

k
2 x5+W k

8W
k
4 x3+W k

8W
k
4W

k
2 x7

This puts a constraint though, the signal length has to be a power of 2. The
number of decomposition is thus log2(N). If the signal size is not a power of 2
it is necessary to use zero padding (add as may 0 as necessary at the end of the
input). Note that padding with 0 in time domain leads to an interpolation of the
FFT. Middle zero padding the FFT (in the frequency domain) interpolates the
IFFT (time domain). Periodizing in the frequency domain implies sub-sampling
in the time domain (this will be useful for the Scattering Network). One last
thing to notice here is the order of the input values in the decomposition. Be-
cause of the nature of this decomposition (even/odd) we end up with the x
terms being rearranged in a specific order : the bit-reversal order. This can be
found by taking the symmetric of the binary position of the input value as seen
in this little example for N = 8:

0 : 000→ 000 : 0

1 : 001→ 100 : 4

2 : 010→ 010 : 2

3 : 011→ 110 : 6

4 : 100→ 001 : 1

5 : 101→ 101 : 5

6 : 110→ 011 : 3

7 : 111→ 111 : 7

2.2.2 Twiddle Factor Properties

Complexity has already been broken down but we can still optimize the im-
plementation by exploiting the Twiddle Factor properties using roots of unity
properties. In fact we have :

W k
N = e

−i2πk
N = cos(2πk/N)− i sin(2πk/N)

Thus for N = 2:

W 0
2 = W 2

2 = W 4
2 = ...

W 1
2 = W 3

2 = W 5
2 = ...

And for N = 4

W 0
4 = W 4

4 = W 8
4 = ...

W 1
4 = W 5

4 = W 9
4 = ...

W 2
4 = W 6

4 = W 10
4 = ...

W 3
4 = W 7

4 = W 11
4 = ...
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And so on using trigonometric properties, with functions here beingNπ-periodic.
So using this will allow us to perform less Twiddle Factor computation at each
level.

2.2.3 Butterfly Scheme

Finally, the last brick is the following butterfly scheme allowing an in-place FFT
which is memory friendly.

2.3 Implementation

Firstly, our implementation is made of three nested loops, the main one which
will go through the log(N) levels of decomposition. The second one will go
through the blocks inside a specific level (the last level as 1 block whereas
the first level as N/2 blocks). Finally the last loop will go inside a block (a
block on the first decomposition level will have size 2 while the block in the
last decomposition level will be of size N). For each level (i), only 2i Twiddle
factors are computed in the main loop where i is the decomposition level from
0 to log(N) − 1. A simple temporary variable is used in order to perform the
swapping operations. Here is an instance of this implementation for N = 8 and
a human friendly output explaining the performed steps.

Level : 0
W[0]=W(0 ,2 )
Block : 0

s i g n a l [1]∗=W[ 0 ]
tmp=s i gna l [ 0 ]
s i g n a l [0]+= s i gn a l [ 1 ]

s i g n a l [1 ]=tmp−s i g n a l [ 1 ]

Block : 1
s i g n a l [3]∗=W[ 0 ]
tmp=s i gna l [ 2 ]
s i g n a l [2]+= s i gn a l [ 3 ]
s i g n a l [3 ]=tmp−s i g n a l [ 3 ]

Block : 2
s i g n a l [5]∗=W[ 0 ]
tmp=s i gna l [ 4 ]
s i g n a l [4]+= s i gn a l [ 5 ]
s i g n a l [5 ]=tmp−s i g n a l [ 5 ]
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Block : 3
s i g n a l [7]∗=W[ 0 ]
tmp=s i gna l [ 6 ]
s i g n a l [6]+= s i gn a l [ 7 ]
s i g n a l [7 ]=tmp−s i g n a l [ 7 ]

Level : 1
W[0]=W(0 ,4 ) ,W[1]=W(1 ,4 )
Block : 0

s i g n a l [2]∗=W[ 0 ]
tmp=s i gna l [ 0 ]
s i g n a l [0]+= s i gn a l [ 2 ]
s i g n a l [2 ]=tmp−s i g n a l [ 2 ]
s i g n a l [3]∗=W[ 1 ]
tmp=s i gna l [ 1 ]
s i g n a l [1]+= s i gn a l [ 3 ]
s i g n a l [3 ]=tmp−s i g n a l [ 3 ]

Block : 1
s i g n a l [6]∗=W[ 0 ]
tmp=s i gna l [ 4 ]
s i g n a l [4]+= s i gn a l [ 6 ]
s i g n a l [6 ]=tmp−s i g n a l [ 6 ]
s i g n a l [7]∗=W[ 1 ]
tmp=s i gna l [ 5 ]
s i g n a l [5]+= s i gn a l [ 7 ]
s i g n a l [7 ]=tmp−s i g n a l [ 7 ]

Level : 2
W[0]=W(0 ,8 ) ,W[1]=W(1 ,8 )
W[2]=W(2 ,8 ) ,W[3]=W(3 ,8 )
Block : 0

s i g n a l [4]∗=W[ 0 ]
tmp=s i gna l [ 0 ]
s i g n a l [0]+= s i gn a l [ 4 ]
s i g n a l [4 ]=tmp−s i g n a l [ 4 ]
s i g n a l [5]∗=W[ 1 ]
tmp=s i gna l [ 1 ]
s i g n a l [1]+= s i gn a l [ 5 ]
s i g n a l [5 ]=tmp−s i g n a l [ 5 ]
s i g n a l [6]∗=W[ 2 ]
tmp=s i gna l [ 2 ]
s i g n a l [2]+= s i gn a l [ 6 ]
s i g n a l [6 ]=tmp−s i g n a l [ 6 ]
s i g n a l [7]∗=W[ 3 ]
tmp=s i gna l [ 3 ]
s i g n a l [3]+= s i gn a l [ 7 ]
s i g n a l [7 ]=tmp−s i g n a l [ 7 ]

Note that Twiddle factors are computed at the start of each main loop
computing the needed values which are then reused throughout the blocks,
meaning that for the first level only one value is computed and then reused
all along the blocks. Here is an example of the use :

WAV<> wav( ” s i g n a l . wav” ) ; // l o a d a wav i n t o f l o a t t y p e a r r a y
f f t<> s i g n a l f f t ( s i g n a l . ptr ( ) , s i g n a l . S i z e ) ; // d e f a u l t p a d d i n g o p t i o n =1
s i g n a l f f t . ComputeFFT ( ) ;
s i g n a l f f t . ComputeIFFT ( ) ; // g e t b a c k t o t h e o r i g i n a l s i g n a l
s i g n a l f f t [ 2 ] ; // a c c e s s t h e s e c o n d c o e f f i c i e n t
s i g n a l f f t>>” s i g n a l f f t . txt ” ; // e x p o r t i t
wav<<” processed . wav” ; // l o a d a new wav
s i g n a l f f t . ComputeFFT(wav . ptr ( ) , wav . S i z e ) ; // p e r f o rm a new FFT

Note that the parameters of the fft class are by default float and float, the first
one stands for the type of the input signal and the latter for the coefficients type
(complex¡float¿). Finally the padding option which by default is 1 can be set to
0 if the user is sure that the given signal is already a power of 2, this force to
skip the padding part resulting in faster computation. Also the coefficients are
stored as complex type even after having performed an IFFT meaning that one
needs to use a typecast to retrieve the original float signal for example.

2.3.1 Inverse Fourier Transform

In order to simplify the algorithm we sill use the following formula :

IFFT (x) =
1

N
conj(FFT (conj(x)))
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2.4 FFT Graph

Figure 2: FFT Summary Diagram

3 Spectrogram

Each Xk is a complex number that encodes how strongly the oscillation at this
frequency is represented in the data but by doing an FFT we loose the time
component. A useful tool is the spectrogram allowing to retrieve part of the
time information. The main idea is to perform multiples FFT on a signal each
one being located enough in time so the frequency information gained by the
FFT can also be linked to a more or less specific time position in the signal.
Note however that precision in both time and frequency is impossible to get but
depending on the needs one can choose which one to enhance by modifying the
size of the considered window. Larger window gives better frequency resolution
but less time precision and vice-versa. It is easy to picture the fact that smaller
windows are better for the high frequency part allowing good time precision
while for low frequency a larger window has to be used for being able to capture
it. This problem is lessen in wavelet decompositions and thus the scattering
network since this window size is not constant any more.

3.1 Algorithm

Conceptually a spectrogram is computed with the following scheme :
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• splitting the signal into overlapping (or not) parts of equal length defined
by the user.

• Applying to each of these chunck a windowing function (typically hanning
or hamming) in order to remove artefacts by periodizing the function so
the limit points (start and end of the chunk) are equal. This part is called
apodization

• computing the FFT on each of these chunks

• for each of computed FFT, taking the absolute value of the coefficients
will give the columns of the spectrogram.

The windowing is needed since the FFT computation presumes that the input
data repeats over and over. This is important when the initial and final values
of the data are not the same because the discontinuity causes artefacts in the
spectrum computed by the FFT.
In addition, in this toolbox, only the first half of the FFT coefficient are put
into the spectrogram thus avoiding symmetrical redundancy. This is due to the
fact that our input signal is real and so the second half of the FFT coefficients
are simply the complex conjugate of the first half, since in the spectrogram we
display the absolute value of the coefficients, we get symmetric FFT coefficients
about the middle point.
Most window functions afford more influence to the data at the center of the
window than to data at the edges, which represents a loss of information. To
mitigate that loss, it is common to use overlapping in time (usually 50%).

3.2 Implementation

It is important to note that the spectrogram (2D-matrix) is stored by column
and not by line for faster computation. In fact, during the spectrogram calcu-
lation we need to access this matrix column-wise. The operator [] returns the
column while the operator () takes two arguments and return the corresponding
value in a normal way. Let’s look at an example :

spectrogram<> b( ” s i gna l 1 . wav” , 2 56 , 0 . 2 5 ) ; // d e f a u l t w indow f u n c t i o n : hamming
WAV<> wav( ” s i gna l 2 . wav” ) ; // l o a d a n o t h e r wav
b . Perform (wav . ptr ( ) , wav . S i z e ) ; // c ompu t e s p e c t r o g r am g i v e n t h e s e new e n t r i e s
b>>” l i f e s p e c t r o . txt ” ; // w r i t e t h e m a t r i x i n t o a t x t f i l e

b [ 1 ] [ 0 ] ; // s e c o n d co lumn , f i r s t e l e m e n t
b ( 0 , 1 ) ; // f i r s t l i n e s e c o n d e l e m e n t same r e s u l t a s a b o v e

The template parameter defines the coefficients type. The default value is
float. Also note that no transformation is performed after the absolute value is
computed, which means that if one want to apply a logarithmic function (most
common) this has to be done manually after computation.
The apodization can be done using one of the available windowing function :

• hamming

• hanning

• triangular

• hann poisson

but can also be used with a specific function and passing its pointer as the last
argument of the spectrogram class.

12



3.3 Graph

Figure 3: Spectrogram Summary Diagram

3.4 Examples

Let’s look at some spectrogram examples. Note that a logarithmic function has
been applied to the computed values (improving coefficient representation for
us). The signals are from a bird and a dolphin. Note that the first one was
taken from a classification challenge 1.

1http://www.imageclef.org/lifeclef/2015
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Figure 4: Spectrogram 128 50%

Figure 5: Spectrogram 128 50%
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Figure 6: Spectrogram 512, 50%

4 Scattering Network

4.1 Introduction

The Scattering Network aims to find a better data representation after numerous
transformations of a raw input.

The basic idea is to perform series of linear and non linear operations. The
linear operations are the convolutions while the non linear ones are the appli-
cations of absolute values. The use of the latter allows fast convergence by the
contractive property. The convolutions are basically decomposing the signal into
a wavelet basis representation. A parallel can be make with the FFT and the
complex sine decomposition, we just decompose an input into a feature vector
where here features are wavelet basis. The structure itself of the network can
be compared to a Convolution Neural Network where the filters are computed
and fully determined by the meta parameters while in a CNN they are learned
during training. This is a huge difference in term of computation time allowing
an good representation without training even though filters generation is also
complex.
The better data representation can be used for simple data analysis or data
learning but it finds its best use in classification. In fact, this new feature space
is much more suited for the use of linear classifier for example. Note that in this
implementation we won’t look at the reconstruction problems since our main
goal is not to use the Scattering Network for compression,reconstruction,... Let’s
look at the general picture of the scattering network and analyse it briefly.
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Figure 7: Scattering Summary. Source : http://www.di.ens.fr/data/

publications/papers/1304.6763v1.pdf

In this case the scattering network is made of 3 layers. Each layer has low-
pass filters (φ) and high-pass filters (ψ). In our specific case of 1D signals,
there is only one φ per layer. Given an input signal x of size N we perform a
low-pass decomposition (S0x) by performing the convolution x ? φ and a high-
decomposition leading to a output size of ×2N/T × NumberOfPsisFilters by
performing NumberOfPsisFilters convolutions x ? ψi,λ1 where ψi,λ1 is the ith

filter of the ψ-filter bank generated by the meta parameters λ1. Finally on this
high-decomposition is applied the absolute value operation.
Then for the second layer, each one of the previous high-decomposition is treated
as a input signal and the same algorithm is performed. Details about this will
be given in the scattering layer section but we can already note that the meta
parameters are specific to a scattering layer Finally let’s review what the meta
parameters are about :

• T determines the convolution process between a filter and the signal by
giving the time resolution (low T gives better time resolution which might
be better for first layers)

• Q determines the quality factor (the number of filters per octave)

• J determines the number of octave to go through.

• PE (Periodization Extent) constant used in the filter periodization (1 by
default)

In order to respect this architecture, this toolbox uses a specific class : Meta-
Param using default parameters and a TtoJ method :

MetaParam L1param (500 ) ;
// L1param . T =500 , L1param . Q=1 , L1param . J =8 , L1param . PE=1
L1param=MetaParam (500 , 2 ) ;
// L1param . T =500 , L1param . Q=2 , L1param . J =6 , L1param . PE=1
L1param=MetaParam (500 , 2 , 4 ) ;
// L1param . T =500 , L1param . Q=2 , L1param . J =4 , L1param . PE=1
L1param=MetaParam (500 , 4 , 4 , 4 ) ;
// L1param . T =500 , L1param . Q=4 , L1param . J =4 , L1param . PE=1

Let’s now see the details of each implementation level and emphasize the
implementation architecture used.
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4.2 Filter Bank implementation

Filters are created through the constructor of the Filter1D class. Given meta-
parameters and a support size, the constructor will initialize all the wanted
variables and compute the actual filters. Note that the Filter1D class has two
children : the MorletFilter1D and GaborFilter1D. These two specializations
have their own filter generation algorithm. This also means that if one wants
to implement a new filter, the only thing to do it to create another class of the
name of this filter, inherit from the Filter1D class and implement the coefficients
generation method.
Note that the constructor can be used in two different ways :

• Giving support size, meta parameters, and the position of the filter in this
configuration (gamma)

• Giving a support size, a sigma and a xi.

The first one is more practical for the ψ generation since the size and the meta
parameters are fixed for a layer, we just have to loop through γ. On the other
hand, the second constructor is simpler for the φ filter generation, in fact, since
only one filter is made per layer, we just have to compute ξ and σ for this filter.
Here is an example with arbitrary coefficients :

Fi l ter1D∗ BankFi lter=new Fi l ter1D [ 5 ] ;
BankFi lter [0 ]= GaborFilter1D (500 , 0 , 1 , 2 ) ; // 500 p o i n t s , x i =0 , s i gma =1 ,PE=2
for ( int i =1; i<5;++i )

BankFi lter [ i ]=MorletFi l ter1D (500 ,2+0.5∗ i , 0 . 2∗ i ) ; // 500 p o i n t s , x i = f ( i ) ,
// s i gma=g ( i ) , PE=1 ( d e f a u l t )

ofstream f i l e ( ” f i l t e r s . txt ” ) ;
for ( int i =0; i<5;++i ){

f i l e <<BankFi lter [ i ] ; // u s e o f t h e o v e r l o a d e d o p e r a t o r
f i l e <<”\n” ;

}
delete [ ] BankFi lter ;
f i l e . c l o s e ( ) ;

Giving the following result :

Figure 8: Filters generation example, orange : Gabor filter, blue : Morlet
wavelets.

The filters are directly computed in the Fourier domain to speed up the
decomposition algorithm, indeed we only have to compute the FFT of the input
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to perform the decomposition algorithm now. Here ξ corresponds to the central
frequency and so to the global maximum position. It can be seen as a position
parameter while σ is a scale parameter. In practice, in order to generate the
filters we always take the mother coefficients that are exponentially transformed
through a scale coefficient. We have

Ξ =
π

2
∗ (2−1/Q + 1)

Σ =
√

3 ∗ (1− 2−1/Q)

And so the scaling factor for the filter i is :λi = 2−i/Q which leads to the
following coefficients for any given filter i for a specific layer having the same
meta parameters :

ξi = Ξ ∗ λi
σi = Σ ∗ λi

Filters In this implementation, high-pass filters are Morlet wavelets while low-
pass filters are Gabor filters. Note that Morlet filters are actually another name
for Gabor kernels. The difference between the Gabor function (nonzero-mean
function) and the Gabor kernel (zero-mean function) is that the Gabor kernel
satisfies the admissibility condition for wavelets (integral equals to 0), thus being
suited for multi-resolution analysis. The admissibility condition ensures that the
inverse transform and Parseval formula are applicable.

Filter Periodization In order to always have 2π-periodic filters, we use the
PE (periodization extent) coefficient in a special case of the following formula :

f(x) =
∑
n∈Z

f(x+ 2πn)

In practice nothing assures the convergence but since we use gaussian functions
quickly decreasing to 0 this is not a problem. Also in practice, we use n ∈
{−PE,−PE+1, ..., PE, PE+1} with x ∈ {x ∈ R : x = i∗2π/T, i = 0, ..., T−1}
which is similar to x ∈ {0, 2π/T, 2 ∗ 2π/T, ..., (T − 1)2π/T} So x covers [0, 2π[
with T points linearly separated by 1/T . In practice a periodization extent of
1 is already enough.
The n coefficients implies the range on which the wavelet is evaluated :

[−2π ∗ PE, 2π ∗ (1 + PE)− 1/T ]
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4.2.1 Graph

Figure 9: Filter1D Summary Diagram

4.3 Layer Implementation

The role of this class is to be the link between the raw input, the meta param-
eters, and the bank filters by performing the decomposition process. Firstly,
this class takes a 2D input. This force to transform the 1D input signal for
the first layer but then allow an easy link between layers by directly setting the
input of the next one as the output of the previous one. Given the set of inputs,
private variables are computed which determine the structure of the class by
computing variables that will be passed to the next layer such as the size of the
output (given the input size and the number of psis filters :Q ∗ J). Then when
all the psis filters are available a Littlewood-Paley normalization is performed
(due to the logarithmic spaced filters). After this the filters are generated using
the Filter1D class. The Decomposition can now be performed.
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4.3.1 Graph

Figure 10: Scattering Layer Summary Diagram

4.4 Decomposition Implementation

The core of the algorithm lies in this decomposition. Firstly, the convolution
defined in the section 4.1 are redundant and so are performed only every T/2
points. This result in a reduced output length and faster computation. Secondly,
the filters are 0 almost everywhere and so the product between the FFT of the
signal and the filters is mostly a waste of time. To solve this the resulting coeffi-
cients are only computed for the filter’s non negligible coefficients (and set to 0
everywhere else). These informations are computed by the Filter1D class during
the call of OptimizeFilter. In addition, it is necessary to perform a periodization
since we perform in time domain a convolution every T/2 points we must do the
product of the FFT followed this before computing the IFFT (allowing a time
sub-sampling). The output length must then be InputSize ∗ 2/T . Doing this
for each psis filter gives the output of the layer. Here is a simple scheme not
taking into account these optimizations in order to emphasize the algorithm :
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Data: Input,inputN,inputM,Meta Parameters
Result: Output,outputN,outputM
NumberOfPsis=J*Q;
outputN=inputN*NumberOfPsis;
outputM=inputM∗2/T ;
output (outputN,outputM);
BankPsis;
Phi;
for i = 0→inputN do

inputFFT=FFT(input[i]);
LowDecomposition[i]=IFFT(periodize(inputFFT.*Phi));
for j = 0→ NumberOfPsis do

HighDecomposition[i*NumberOfPsis+j]=abs(IFFT(periodize(inputFFT.*BankPsis[j])));

end

end
Algorithm 1: Decomposition Algorithm

With periodize being the function that will periodize the result in order to
sub-sample in the time domain to obtain the desired output size.

4.5 Scattering Network Implementation

Finally here is how to perform the Scattering Network on a signal and save The
outputs :

MetaParam∗ opt=new MetaParam [ 3 ] ;
opt [0 ]=MetaParam (8 , 30 , 4 , 1 ) ;
opt [1 ]=MetaParam (64 , 1 , 1 , 1 ) ;
opt [2 ]=MetaParam (1024 , 1 , 1 , 1 ) ;
Scatter ingNetwork decomposit ion ( ” l i f e c l e f . wav” , opt , 3 ) ;

o fstream f i l e ;
cout<<”DONE M<OT”<<endl ;
f i l e . open ( ” l aye r1 . txt ” ) ;
f i l e <<decomposit ion [ 0 ] ;
f i l e . c l o s e ( ) ;
f i l e . open ( ” l aye r2 . txt ” ) ;
f i l e <<decomposit ion [ 1 ] ;
f i l e . c l o s e ( ) ;
f i l e . open ( ” l aye r3 . txt ” ) ;
f i l e <<decomposit ion [ 2 ] ;
f i l e . c l o s e ( ) ;
delete [ ] opt ;

In fact the operator [] is overloaded to return the specific layer which itself use
its overloaded operator to export the coefficients.
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Figure 11: Scattering Network Summary Diagram

4.6 Examples

No operations applied (logarithm of renormalization or else)

Figure 12: L1, L2, L3 of Inia Perou (slow clicks) T1:4 Q1:32 J1:2 T2:256 Q2:1
J2:1 T3:16 Q3:1 J3:1
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Figure 13: Inia Perou (fast clicks) 4 20 1 128 1 1 2 4 1

Figure 14: Bird (LIFECLEF Challenge) 4 25 4 256 1 1 128 1 1

5 imagesc TODO

5.1 Import data

Load data. First line uses push back method that expands the size of the vector
by 2 when it’s full meaning that for N points only log(N) expansions are made.
Following lines directly have the right length. No other way since we don’t know
the size of the matrix to load.
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5.2 Optimization

Rendering is done using openGL directly from C. Squares are used because no
need for triangles since they all lie in the same plane in 2D, this also reduces
the number of shapes to draw. The best optimization is the use of the array
by allowing the good client states, in fact passing directly the vertex color and
points arrays reduces functions calls by a lot.

5.3 Colormap

To render good spectrograms or scalograms is it necessary to have a good col-
ormap. The one used here is the same as Matlab or Python.

Figure 15: Colormap used in the toolbox

5.4 Implementation

Given a matrix N ×M squares are computed using or not the original aspect
ratio. If it is kept then a matrix of sizeN×2N will be displayed into [0, 1]×[0, 0.5]
and this is true for every possible ratio. Because this can become bad for really
low ratio (few rows millions of columns) it is possible to disregard the original
ratio drawing the matrix into the unitary square. Even it is not mandatory this
part of the toolbox is made to be used in command line rather than inside a
program, this can be easily done by :
. / imshow myspectro . txt
. / imshow 0 myspectro . txt

The 0 option specifies to no keep the original aspect ratio meaning that now the
image will be displayed as a square.

References

[1] Deep Scattering Spectrum.

24



[2] A dft and fft tutorial. http://www.alwayslearn.com/dft%20and%20fft%

20tutorial/DFTandFFT_BasicIdea.html, June 2014.
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